The LINTEL, a system for estimating the effective dose equivalent of the space stations’ crew

18th WRMISS, September 3–5, 2013, Budapest, Hungary
Authors

Deme S.¹, Apáthy I.¹, Csőke A.¹, Hirn A.¹, Ivanova O. A.², Nikolaev I. V.³, Pázmándi T.¹, Shmatov G. A.³, Shurshakov V. A.², Szántó P.¹, Zábori B.¹

¹Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary

²State Scientific Center, Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia

³Rocket Space Corporation Energia, Korolev, Moscow Region, Russia
Assessment of Radiation Exposure of Astronauts in Space

Draft Report for Consultation, 2012 July 03
ICRP Publication XXX
Absorbed dose, D

\downarrow

Dose equivalent, H

\downarrow

Dose equivalent in an organ or tissue, $H_{T,Q}$

\downarrow

Effective dose equivalent, H_E
Solved tasks

- Absorbed dose, \(D \Rightarrow \text{Pille} \) (\(\eta \sim 0.8 \))
- Dose equivalent, \(H \Rightarrow \text{TRITEL} \) (field value)

(The dose equivalent at a point in tissue is given by: \(H = Q \, D \), where \(D \) is the absorbed dose and \(Q \) is the quality factor at that point)
Final task: estimation of effective dose equivalent, H_E
Step 1

Estimation for all relevant organs or tissues

• Dose equivalent in an organ or tissue, $H_{T,Q}$

The product of the mean quality factor, Q_T, and the mean absorbed dose, D_T, in an organ or tissue T:

$$H_{T,Q} = Q_T \, D_T.$$

A quantity introduced by ICRP in Publication 26 and replaced by equivalent dose in an organ or tissue in Publication 60.
Step 2

Calculation of

• Effective dose equivalent, H_E

The tissue-weighted sum of dose equivalent in an organ or tissue from all specified organs and tissues of the body, given by the expression:

$$H_E = \sum w_T H_{T,Q}$$

where $H_{T,Q}$ is the dose equivalent in an organ or tissue w_T is the tissue weighting factor.
Estimation the dose equivalent by measurement of organ/tissue dose equivalent for all relevant organs/tissues

\[\Downarrow \]

LINTEL

Measurement of LET spectra at different tissue equivalent depths separately for galactic and trapped radiation
Locations of the containers and jacket pockets with detectors

- 20 containers with the detectors inside the phantom
- 32 pockets with the detectors on the phantom surface
- More than 500 LiF TLD in total and CR-39 type detectors
- \(D = D(\text{depth}, \varphi, \theta) \)

(*V.A. Shurshakov et al. 16th WRMISS, Prague, 2011*)
Recent version of LINTEL is dedicated for equivalent dose measurement of the following organs (tissue equivalent depth in cm*):

- Eye lens (0.3)
- Testis (1.8)
- Blood forming organs – BFO (5)
- Central nervous system – CNS (7)
- Gastro-enteric system – GES (9)

(*V.A. Shurshakov et al. 16th WRMISS, Prague, 2011)
Principle of LINTEL

Detectors #2 – #6 are gated by the signal of detector #1
Cu absorber thicknesses

- 1,8; 0,32
- 7; 1,17
- 5; 0,84
- 9; 1,50
- 18; 2,97

Range MS20 (cm) vs. Range Cu (cm)
Detectors and absorbers

Detector number

Measuring direction

8.5 5.7 3.1 5.1 3.2 3.2 15 mm

PIPS detector

Detector house

Cu
Proton energy limits for detectors #n
α-energy limits for detectors #n

Energy (MeV) vs. Cu thickness (cm) graph with points for energies:
- Detector #3: 176 MeV
- Detector #4: 307 MeV
- Detector #5: 371 MeV
- Detector #6: 428 MeV
- Shield: 638 MeV
Proton and α-energy limits for detectors $\#n$
Geometrical efficiencies

\[y = 707x^{-1.65} \]

Distance from Detector #1 (mm) vs. Geom. factor (cm².sr)
Energy deposition in 0.3 mm thick Si detector for protons and α-particles.
30 mm Cu shielding against reverse direction particles (penetration: protons >160 MeV, α-particles >638 MeV)
Electronics

Fully based on TRITEL electronics, uses two TRITEL detector units with 3+3 preamplifier cards.

Registers 12 spectra (2 spectra for each detectors):

- One ungated spectrum inside SAA and one spectrum outside SAA (detector #1)

- Five gated by detector #1 spectra, detectors #2...#6) (each inside and outside SAA)

Central (interface) unit is the same one as for TRITELs
Mechanical construction

LINTEL detector unit includes electronics of two TRITEL detector units and one LINTEL telescope in a common housing.

Additional mechanism provides possibility to set in any direction the telescope axis in full 2π solid angle.
Principle

Electronic unit
LINTEL telescope

0° (zenit)

Angle -90°...+90°

Cable
Angle -90°...+90°

Velcro
Automatic scanning

-90° – +90°/15° = 12 points

0° – 180°/15° = 12 points

12 x 12 = 144 points

144 days = ~5 months
Marking: □ - Pille dosimeter, PR - Pille reader
T - TRITEL Detector Unit
L - LINTEL Detector Unit
TI - TRITEL Interface Unit
Conclusions

Absorbed dose, \(D \Rightarrow \sqrt{\text{Pille}} \)

Dose equivalent, \(H \Rightarrow \sqrt{\text{TRITEL}} \)

- Dose equivalent in 5 organs \(H_{T,Q} \Rightarrow \sqrt{\text{LINTEL}} \)

- Effective dose equivalent, \(H_E \Rightarrow \sqrt{\text{to be calculated from LINTEL data}} \)

- Radiation field to effective dose equivalent conversion coefficients for galactic and trapped radiation separately
Thank you for your attention!