Status Report of the ICCHIBAN Experiments

Hisashi Kitamura¹, Satoshi Kodaira¹, Yukio Uchihori¹, Nakahiro Yasuda², Eric Benton³, Thomas Berger⁴, Michael Hajek⁵, Iva Jadrnickova⁶, Ondrej Ploc⁶, and ICCHIBAN Participants

(1) Radiation Measurement Research Section, National Institute of Radiological Sciences (NIRS), Chiba, Japan
(1) Research Institute of Nuclear Engineering, University of Fukui, Tsuruga, Japan
(2) Department of Physics, Oklahoma State University, Stillwater, USA
(3) Institute of Aerospace Medicine, DLR, Cologne, Germany
(4) Department of Nuclear Safety and Security, IAEA, Vienna, Austria
(5) Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Prague, Czech Republic

Sept. 3rd 2013 17th WRMISS in Budapest
Contents

- ICCHIBAN Projects
 - On-going Experiments
 - Proton ICCHIBAN Experiments
- Summary
ICCHIBAN Projects

• WRMISS
 • The objective of the workshop was to elaborate an optimal set of instruments for radiation protection issues and to develop and agree on methodologies so that data from these instruments can be compared and properly interpreted. (a excerpt from 3rd WRMISS recommendation)

• Intercalibration campaigns
 • During the 4th WRMISS in Farnborough, all participants agreed that it is necessary to establish a process for calibration and intercomparison of space radiation dosimeters. (http://wrmiss.org)

• Ground-base inter-comparison experiments using accelerators
 • The first exposures were performed with heavy ion beams; several 100 MeV/nucleon He to Xe at the HIMAC, named as intercompare radiation instruments designed for use in space as part of a newly initiated InterComparison for Cosmic-ray with Heavy Ion Beams At HIMAC (ICCHIBAN) project.
 • The experiments have been spread to other facilities (BNL-NSRL, CERN-CERF, LLUMC and NCCHE) on the framework of the ICCHIBAN project.
 • Intercomparisons of detectors on ISS also have been performed as BRADOS, Space-ICCHIBAN, Matroshka-R etc.
ICCHIBAN Project

(InterComparison for Cosmic-ray with Heavy Ion Beams At NIRS)

- Determine the response of space radiation dosimeters to heavy ions of charge and energy similar to that found in the galactic cosmic radiation (GCR) spectrum.

- Compare response and sensitivity of various space radiation monitoring instruments. Aid in reconciling differences in measurements made by various radiation instruments during space flight.

- Establish and characterize a heavy ion “reference standard” against which space radiation instruments can be calibrated.

http://www.nirs.go.jp/ENG/rd/1ban/index.html

NASA-JSC, JAXA, IBMP, DLR, ... 13 countries, 21 institutes
Proton ICCHIBAN

- To understand responses of detectors for **Low LET** components
 - Main objects: TLD, OSL, glass, etc.
 - To expose detectors with same conditions, the ICWG (ICCHIBAN Working Group) prepared “Standard Packages”.
- Construction of radiation field for low LET particles at accelerators.
- Past experiments
 - 1st Proton ICCHIBAN (LLUMC)
 - Proton 250 MeV
 - Sep, 2003
 - 2nd Proton ICCHIBAN (NIRS Cyclotron)
 - Proton 40, 70 MeV
 - Jan, 2010
 - 3rd Proton ICCHIBAN (NIRS Cyclotron, NCCHE)
 - protons 30, 235 MeV
 - Feb., 2011
 - 4th Proton ICCHIBAN...
Next Plan of Proton ICCHIBAN

- Accelerator: NIRS-Cyclotron
 - General purpose radiation room (C-8)
 - Easy to get machine times and to be controlled by ourselves.
 - The NIRS-HIMAC is not established for proton beams officially.

- Usable Beams
 - Proton: 25, 30, 40, 50, 60, 70, 80 MeV (80 MeV is maximum energy)
 - \(^4\)He: 100 MeV
Selection of Energy and ion

“Preliminary Results of Proton ICCHIBAN Experiments”, H. Kitamura, et al., WRMISS 17

- Luminescence efficiencies are almost constant in 1-2 keV/um LET region.
- But, some detectors showed slight increases in luminescence efficiencies with LET increasing.
 - Because of the shorter range of 30 MeV proton beam, thickness of detectors should be considered to calculate the exposed doses.
 - The ICWG should check the real thickness of the standard packages and the time variation of the calibrated ion chamber to evaluate the beam monitor.
- → low energy and high LET beams are not good for the inter-comparison experiments.
TLD (7LiF:Mg,Ti)
4th Proton ICCHIBAN

- Plan of the next experiments
 - Energy: proton 50, 80 MeV
 - NIRS-Cyclotron Facility
 - May. 2014

<table>
<thead>
<tr>
<th>Beam Energy (MeV)</th>
<th>50</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Energy (MeV)</td>
<td>46</td>
<td>77</td>
</tr>
<tr>
<td>LET in Water (keV/µm)</td>
<td>1.33</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Summary

- We are planning of 4th Proton ICCHIBAN experiments using 50 and 80 MeV for passive dosimeters at the NIRS-Cyclotron facility.
- We are not planning of ICCHIBAN experiments for active dosimeters because of shortages of human resources. But, we are willing to support your calibration experiments using the NIRS accelerators.
 - Deadline of new proposals:
 - HIMAC: December 2013
 - Cyclotron: January 2014
Thank you for your attention.
Brief History of ICCHIBAN Project

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
</table>
| 2000 | Recommendation of Intercomparizon (WRMISS-4)
The ICCHIBAN Working Group (ICWG) established. |
| 2005 | 1st ICCHIBAN
3rd ICCHIBAN
5th ICCHIBAN
7th ICCHIBAN
1st CERF ICCHIBAN
CR-39 ICCHIBAN |
| 2010 | 2nd Proton ICCHIBAN
3rd Proton ICCHIBAN |
Brief History of ICCHIBAN Project

<table>
<thead>
<tr>
<th>Year</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Recommendation of Intercomparizon (WRMISS-4)</td>
</tr>
<tr>
<td></td>
<td>The ICCHIBAN Working Group (ICWG) established.</td>
</tr>
<tr>
<td>2005</td>
<td>1st ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>2nd ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>3rd ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>4th ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>5th ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>6th ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>7th ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>8th ICCHIBAN</td>
</tr>
<tr>
<td>2010</td>
<td>1st Proton ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>1st NSRL ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>1st CERF ICCHIBAN</td>
</tr>
<tr>
<td></td>
<td>CR-39 ICCHIBAN</td>
</tr>
</tbody>
</table>

Timeline:
- **Sept. 3rd 2013**: 17th WRMISS in Budapest
National Cancer Center Hospital East (NCCHE) Cyclotron

- **Place:** Kashiwa-City, Japan
- **Establish:** April 1997
- **Purpose:** Cancer Therapy
 - http://www.ncc.go.jp/en/ncce/about/hospital_e.html
- **Type:** AVF-Cyclotron
- **Beam:** Proton 235 MeV
 - http://www.shi.co.jp/quantum/eng/product/proton/proton.html
4 standard packages were exposed same time.
Characteristic of 235 MeV beam

Bragg curve

Depth in water (mm)

Relative Dose

0 50 100 150 200 250 300

Uniformity

Distance from Isocenter (mm)

Relative Dose

-100 -50 0 50 100

Energy: 203 MeV
LET in water: 0.45 keV/μm (SRIM 2008)

Uniformity: ±5% within 140 mm diameter

range 262mm
Exposures of proton 235 MeV beam in the NCCHE cyclotron

- Result from range measurement, energy of the beam is **203 MeV**, not 235 MeV. But, I use 235 MeV in this presentation.
- This is the first trial for the NCCHE cyclotron to be used as “reference field”.
 - Exposed doses are almost 80% for nominal doses and have large errors because the nominal doses are smaller than the typical clinical doses.
 - We will evaluate the exposed dose, again.
Characteristic of 30 MeV beam

Bragg Curve

Energy: 26 MeV
LET in water: 2.1 keV/μm
(SRIM 2008)

Uniformity: ±5%
within 70 mm diameter

range 5.8 mm

Sept. 3rd 2013
17th WRMISS in Budapest
Relative exposed dose for 30MeV proton at position of the standard packages

Type A Package	0.956	0.973	0.981	0.986	0.987	0.987	0.984	0.978
	0.974	0.985	0.992	0.994	0.995	0.994	0.990	
	0.983	0.992	0.997	0.998	0.999	0.999	0.998	0.996
	0.987	0.996	0.999	1.000	1.000	1.000	1.000	0.998
	0.987	0.996	0.999	1.000	1.000	1.000	1.000	0.998
	0.983	0.993	0.997	0.998	0.998	0.998	0.998	0.995
	0.973	0.985	0.991	0.994	0.994	0.994	0.992	0.988
	0.957	0.972	0.980	0.984	0.986	0.985	0.982	0.976

Type C Package								

* Not available for 235 MeV proton beam
Specification of the NIRS-Cyclotron

- Type: AVF Cyclotron
- Beams:
 - proton 5-80 MeV
 - deuteron 10-55 MeV
 - 3He 18-147 MeV
 - 4He 20-110 MeV
 - Heavy ions ...

- This cyclotron is used to produce radioisotopes for SPECT/PET mainly.
- It is usable for scientific experiments about one day per a week.
- Typical experiment time is from 11 am to 7 pm (8 hours).
Reference Radiation Field
(C-8 course)

Beam monitor is an ionizing chamber with 17cm diameter aperture.
List of Participants

<table>
<thead>
<tr>
<th></th>
<th>Country</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Armenia</td>
<td>YPI (Yerevan Physics Institute, Yerevan)</td>
</tr>
<tr>
<td>2</td>
<td>Austria</td>
<td>ATI (Atomic Institute of the Austrian Universities, Vienna)</td>
</tr>
<tr>
<td>3</td>
<td>Belgium</td>
<td>SCK-CEN (Belgian Nuclear Research Center, Mol)</td>
</tr>
<tr>
<td>4</td>
<td>Czech Rep.</td>
<td>NPI (Nuclear Physics Institute, Prague)</td>
</tr>
<tr>
<td>5</td>
<td>Germany</td>
<td>DLR (German Aerospace Center, Cologne)</td>
</tr>
<tr>
<td>6</td>
<td>Greece</td>
<td>AUT (Aristotle University of Thessaloniki)</td>
</tr>
<tr>
<td>7</td>
<td>Hungary</td>
<td>KFKI AEKI (KFKI Atomic Energy Research Institute, Budapest)</td>
</tr>
<tr>
<td>8</td>
<td>Japan</td>
<td>JAXA (Japan Aerospace Exploration Agency, Tsukuba)</td>
</tr>
<tr>
<td>9</td>
<td>Japan</td>
<td>NIRS (National Institute of Radiological Sciences, Chiba)</td>
</tr>
<tr>
<td>10</td>
<td>Poland</td>
<td>IFJ (Institute of Nuclear Physics, Krakow)</td>
</tr>
<tr>
<td>11</td>
<td>Russia</td>
<td>IMBP (Institute of Biomedical Problems, Moscow)</td>
</tr>
<tr>
<td>12</td>
<td>USA</td>
<td>Eril Research Inc. (Stilwater)</td>
</tr>
<tr>
<td>13</td>
<td>USA</td>
<td>NASA-JSC (NASA Johnson Space Center, Houston)</td>
</tr>
<tr>
<td>14</td>
<td>USA</td>
<td>Oklahoma State University (Stilwater)</td>
</tr>
</tbody>
</table>
Exposure list (PI-2)

- Proton 70 MeV
 - 1 mGy, 10 mGy, 50 mGy, 100 mGy
 - 50 mGy with 5 mm aluminum
- Proton 40 MeV
 - 1 mGy, 10 mGy, 50 mGy, 100 mGy
 - 50 mGy with 3 mm aluminum
- Blind
 - #1 70 mGy Proton 70 MeV
 - #2 50 mGy 4He 2.2 keV/u
 - Extra #3 52 mGy 12C 11 keV/µm,
 - Extra #4 200 mGy Proton 40 MeV,
 - 20 mGy 12C 11 keV/µm, 10 mGy 28Si 55 keV/µm