A Sort-of Tissue Equivalent Proportional Counter (STEPC) for Space Radiation Dosimetry Applications

Eric Benton, Tyler Collums, and Art Lucas

E. V. Benton Radiation Physics Laboratory
Oklahoma State University
Stillwater, Oklahoma, USA
Research Objectives

• Evolutionary approach to TE ionization chamber and proportional counter design, fabrication, and testing;
• Common 2” φ spherical chamber design;
• Alternative TE plastics;
• Alternative anode wire, field tube, and grid wire configurations;
• Alternatives in fill gas composition and pressure;
• Alternative detector/spectrometer electronics;
• Testing of instruments on near-space Balloon flights.
Design of Prototype STEPC

- Pressurized Steel Canister
- Anode Wire
- Ionization Cavity made of Tissue Equivalent plastic or alternative material
- Preamplifier Circuit
- High Voltage
- Signal
- Gas Fill Tube and Valve
- Preamplifier Power

15th Workshop on Radiation Monitoring for the International Space Station Frascati, Italy, 7-9 Sept 2010
STEPC Prototype Features

Similar in design to FarWest LET-SW2 2” single wire counter, but includes:

• built in preamplifier (Cremat CR-110).
• double O-ring resealable container,
• removable ^{241}Am check source.

Currently five versions of STEPC:

• A-150 Tissue Equivalent Plastic,
• Nylon,
• Acrylic,
• Polyethylene,
• Polystyrene.
STEPC Prototype Circuitry

Electrical feedthroughs

Signal out
12 V
+12 V
HV

CR-110 preamp

Detector
STEPC Prototype

Detector in a can

STEPC’s guts
Stabilization of gas gain as a function of time since STEPC gas fill
Uncalibrated Lineal Energy spectrum from 5.49/5.44 MeV 241Am α-particles measured in A-150 STEPC operating at 1400 V and 173 Torr.
Initial testing at HIMAC with 150 MeV/amu 4He and 500 MeV/amu 56Fe beams

- BIO Room using 10 cm diameter beam
- scintillator to monitor beam flux
Uncalibrated lineal energy (y) spectra measured by the Nylon STEPC during exposures to bare and range modulated 4He beams at HIMAC.
Uncalibrated lineal energy (y) spectra measured by the Nylon STEPC during exposures to the 4He beams at orientations perpendicular to and parallel to the axis of container
Uncalibrated lineal energy (y) spectra measured by the five STEPC detectors during exposures to the \(^4\text{He}\) beam behind 12 cm of absorber.
Uncalibrated lineal energy (y) spectra measured by the polystyrene STEPC in the HIMAC 56Fe beam behind 0.0, 3.0, and 5.0 cm water equivalent absorber.
STEPC Characterization at the ProCure Proton Treatment Center in Oklahoma City, USA
Dose Distributions as a function of Lineal Energy for 87 MeV Protons at ProCure using multiple STEPCs
Dose Distributions as a function of Lineal Energy for Protons at ProCure with the A-150 STEPC

![Graph showing dose distributions as a function of lineal energy for protons at ProCure with the A-150 STEPC. The x-axis represents lineal energy (keV/µm) ranging from 0.1 to 10, and the y-axis represents D(y) (counts keV/µm) ranging from 0 to 1000. The graph includes data for different proton energies: 195 MeV (black), 69 MeV (red), 40 MeV (blue), and 15.5 MeV (green).]
Portable, Autonomous STEPC for high altitude balloon testing

- Integrated into STEPC Container
 - Ionization Cavity ✓
 - Preamplifier: Cremat CR-110 ✓
 - Amplifier: Cremat CR-200 or Amptek
 - Spectrometer/ADC: Bridgeport Instruments Emorpho, XIA µDXP, Amptek DP4
 - High voltage power supply: EMCO or similar DC/DC converter

- External to STEPC Container
 - Microcontroller/Datalogger
 - Battery-based power supply
Conclusions

- Prototype STEPCs have been designed, fabricated and are now being characterized and calibrated.

- Currently comparing STEPCs with ionization cavities made of different materials to assess effect of composition on detector response.

- Currently designing amplifier, spectrometer, and HVPS that will fit in container with existing ionization cavity and preamp.

- Portable, autonomous STEPC, including power supply and data logging computer will be tested on a high altitude balloon mission in early 2011 (we hope).