Time variation of dose quantities obtained by passive dosimeters onboard International Space Station - S. Kodaira¹, N. Yasuda¹, Y. Uchihori¹, H. Kitamura¹, H. Kawashima¹, M. Kurano¹, Yu. Akatov², R. Tolochek², V. Shurshakov², T. Krasheninnikova³, A. Ukraintsev³ - 1) National Institute of Radiological Sciences, Japan - 2) Institute for Biomedical Problems, Russia - 3) OAO Biochimmash, Russia ## Background Passive dosimeters consisting of CR-39 PNTD and TLD are utilized as a space radiation dosimeter in ISS - Small, lightweight and easy handle to monitor dose for person with low cost and without electric power - No information on time (non real-time monitoring) If passive dosimeters are carried out to monitor dose in several batches through a few years, is it possible to look the time variation of dose quantities using them and show the consistency of dose results with the active detectors? ## Biotrack space experiments - ✓ Piers-1 module in International Space Station - ✓ Passive dosimeters - CR-39 (HARZLAS/TD-1) PNTD - TLD-100 (LiF) - ✓ 6 experiments with different terms between Jan. 2007 and Oct. 2008 (~2yrs) - ✓ All of experiments (we call BE01~BE07) have been carried out in the same position using the same detectors #### Time line charts of Biotrack space experiments (BE) | Ехр. | Flight Schedule | Day [day] | |------|-------------------------------|-----------| | BE01 | Jan. 19, 2007 - Apr. 21, 2007 | 92 | | BE02 | Jan. 19, 2007 - Oct. 22, 2007 | 276 | | BE03 | Jan. 19, 2007 - Apr. 19, 2008 | 455 | | BE05 | Oct. 10, 2007 - Apr. 19, 2008 | 191 | | BE06 | Oct. 10, 2007 - Oct. 24, 2008 | 380 | | BE07 | Oct. 10, 2007 - Oct. 24, 2008 | 380 | | Year | | | | | | 20 | 07 | | | | | | | | /r - 25 | | | 20 | 08 | | | | | | |-------|---|-----|---|---|-----|----|-----|---|---|----|----|----|-----|---|---------|---|---|------|----|---|------------------|----|---------|-----| | Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | BE01 | | | | | 0 0 | | 8 8 | | | Ĭ | | | 8 8 | | | | | | | | 3) - 3
30 - 3 | | | 3 | | BE02 | BE03 | 8 8 | | | 3 | | BE04 | BE05 | | i i | | | | | | | | | | | | | | | | 87 V | | | 3 | | | - 6 | | BE06 | BE07 | | Î | | | | | | | | | | | 4 | | | | | | | | | | v — (2) | - 6 | #### **Objectives** - Verifying the time variation of dose quantities in ISS using Passive dosimeters with different durations. - Comparing with the data of other active detectors #### Time combinations By extracting and merging different or overlapped terms, exposure duration can be separated to 4 terms (I~IV) ## Dose derivation using CR-39 and TLD #### Absorbed dose: D_{Total} [mGy] $$egin{aligned} D_{Total} &= D_{\leq 10 keV/\mu m} + D_{>10 keV/\mu m} \ &= \left(D_{TLD} - \kappa D_{CR-39} ight) + D_{CR-39} \ &= D_{TLD} + \left(1 - \kappa ight) D_{CR-39} \end{aligned}$$ #### Dose equivalent: H_{Total} [mSv] $$H_{Total} = D_{\le 10keV/\mu m} + H_{>10keV/\mu m}$$ $= (D_{TLD} - \kappa D_{CR-39}) + H_{CR-39}$ #### Mean quality factor: O_{Mean} $$Q_{Mean} = H_{Total}/D_{Total}$$ κ: proportional constant (Doke et al., 1995) ### LET spectra obtained by CR-39 ## Results of dose quantities | | D _{Total}
[mGy] | D _{Total} rate
[mGy/day] | H _{Total}
[mGy] | H _{Total} rate
[mSv/day] | O _{Total} | |------|-----------------------------|--------------------------------------|-----------------------------|--------------------------------------|--------------------| | BE01 | 21.8±0.6 | 237.2±7.0 | 58.7±1.5 | 637.5±16.2 | 2.7±0.1 | | BE02 | 73.4±2.4 | 266.1±8.6 | 152.2±4.6 | 551.4±16.8 | 2.1±0.1 | | BE03 | 131.7±1.8 | 289.5±3.9 | 252.4±6.1 | 554.7±13.5 | 1.9±0.1 | | BE05 | 58.5±1.7 | 306.0±9.2 | 130.3±4.9 | 682.1±25.5 | 2.2±0.1 | | BE06 | 129.4±2.7 | 340.4±7.1 | 319.4±8.5 | 840.6±22.3 | 2.5±0.1 | | BE07 | 132.5±2.5 | 348.7±6.7 | 283.9±7.3 | 747.0±19.1 | 2.1±0.1 | #### Separated to 4 terms (I~IV) | | Term [DOY] *since 1/1/2007 | D _{Total}
[mGy] | D _{Total} rate
[mGy/day] | H _{Total}
[mGy] | H _{Total} rate
[mSv/day] | Q _{Total} | |----|----------------------------|-----------------------------|--------------------------------------|-----------------------------|--------------------------------------|--------------------| | I | 19 – 111 | 21.8±0.6 | 237.2±7.0 | 58.7±1.5 | 637.5±16.2 | 2.7±0.1 | | Ш | 111 – 295 | 51.6±2.5 | 280.5±13.4 | 93.5±4.9 | 508.3±26.5 | 1.8±0.1 | | Ш | 295 – 475 | 58.3±3.0 | 323.7±16.5 | 100.2±7.7 | 556.8±42.7 | 1.7±0.2 | | IV | 475 – 569 | 70.9±3.2 | 377.2±17.1 | 189.1±9.8 | 1006.0±52.0 | 2.7±0.2 | #### Time variations with solar activities ## 2007~2009: Decreasing the solar activity #### Increasing GCR intensity @ 2007→2009 ## Comparison with ACE-CRIS data (GCR data) Increasing rate: $(D_{IV}/D_{I})_{This work} \sim +160\%$ Exceed over +45% Increasing rate: $(D_{IV}/D_{I})_{ACE-CRIS} \sim +115\%$ Effect of thick shielding inside ISS ?? ### Comparison with DB-8 detector in ISS DB-8 data from Benghin et al., 37th COSPAR 2008 DOY since 2007 Time variation of absorbed dose and increasing rate obtained by this work are consistent with the results obtained by DB-8 detector within error bar → One factor of dose excess compared with ACE data is thought to be due to the shielding inside ISS or contribution of trapped particles in radiation belt ## Summary - ✓ Using 6 data (BE01~BE07) with different durations between Jan. 2007 and Oct. 2008 (~2yrs), the time variation of dose quantities using passive dosimeters (CR-39+TLD) was verified. - ✓ Dose quantity from I to IV terms was increase tendency and the increasing rate of absorbed dose is ~+160% (D_{IV}/D_I ratio), which is not consistent with the estimation of GCR intensity increase (~115%) obtained by ACR-CRIS. - ✓ Increasing rate obtained by this work is good agreement with the data by DB-8 inside same cabin. - → The discrepancy with GCR data obtained by ACE might be explained by the effect of thick shielding inside ISS or contribution of trapped particles in radiation belt. ## Principle of track detection in CR-39 $$S = \frac{V_t}{V_b} - 1 = f(LET)$$ $$= \sqrt{\frac{16B^2D^2}{(4B^2 - d^2)^2} + 1 - 1}$$ → Absorbed dose (D) Dose equivalent (H)