Time variation of dose quantities obtained by passive dosimeters onboard International Space Station

- S. Kodaira¹, N. Yasuda¹, Y. Uchihori¹, H. Kitamura¹, H. Kawashima¹, M. Kurano¹, Yu. Akatov², R. Tolochek², V. Shurshakov², T. Krasheninnikova³, A. Ukraintsev³
 - 1) National Institute of Radiological Sciences, Japan
 - 2) Institute for Biomedical Problems, Russia
 - 3) OAO Biochimmash, Russia

Background

Passive dosimeters consisting of CR-39 PNTD and TLD are utilized as a space radiation dosimeter in ISS

- Small, lightweight and easy handle to monitor dose for person with low cost and without electric power
- No information on time (non real-time monitoring)

If passive dosimeters are carried out to monitor dose in several batches through a few years, is it possible to look the time variation of dose quantities using them and show the consistency of dose results with the active detectors?

Biotrack space experiments

- ✓ Piers-1 module in International Space Station
- ✓ Passive dosimeters
 - CR-39 (HARZLAS/TD-1) PNTD
 - TLD-100 (LiF)
- ✓ 6 experiments with different terms between Jan. 2007 and Oct. 2008 (~2yrs)
- ✓ All of experiments (we call BE01~BE07) have been carried out in the same position using the same detectors

Time line charts of Biotrack space experiments (BE)

Ехр.	Flight Schedule	Day [day]
BE01	Jan. 19, 2007 - Apr. 21, 2007	92
BE02	Jan. 19, 2007 - Oct. 22, 2007	276
BE03	Jan. 19, 2007 - Apr. 19, 2008	455
BE05	Oct. 10, 2007 - Apr. 19, 2008	191
BE06	Oct. 10, 2007 - Oct. 24, 2008	380
BE07	Oct. 10, 2007 - Oct. 24, 2008	380

Year						20	07								/r - 25			20	08					
Month	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
BE01					0 0		8 8			Ĭ			8 8								3) - 3 30 - 3			3
BE02																								
BE03																					8 8			3
BE04																								
BE05		i i																87 V			3			- 6
BE06																								
BE07		Î											4										v — (2)	- 6

Objectives

- Verifying the time variation of dose quantities in ISS using Passive dosimeters with different durations.
- Comparing with the data of other active detectors

Time combinations

By extracting and merging different or overlapped terms, exposure duration can be separated to 4 terms (I~IV)

Dose derivation using CR-39 and TLD

Absorbed dose: D_{Total} [mGy]

$$egin{aligned} D_{Total} &= D_{\leq 10 keV/\mu m} + D_{>10 keV/\mu m} \ &= \left(D_{TLD} - \kappa D_{CR-39}
ight) + D_{CR-39} \ &= D_{TLD} + \left(1 - \kappa
ight) D_{CR-39} \end{aligned}$$

Dose equivalent: H_{Total} [mSv]

$$H_{Total} = D_{\le 10keV/\mu m} + H_{>10keV/\mu m}$$
 $= (D_{TLD} - \kappa D_{CR-39}) + H_{CR-39}$

Mean quality factor: O_{Mean}

$$Q_{Mean} = H_{Total}/D_{Total}$$

κ: proportional constant

(Doke et al., 1995)

LET spectra obtained by CR-39

Results of dose quantities

	D _{Total} [mGy]	D _{Total} rate [mGy/day]	H _{Total} [mGy]	H _{Total} rate [mSv/day]	O _{Total}
BE01	21.8±0.6	237.2±7.0	58.7±1.5	637.5±16.2	2.7±0.1
BE02	73.4±2.4	266.1±8.6	152.2±4.6	551.4±16.8	2.1±0.1
BE03	131.7±1.8	289.5±3.9	252.4±6.1	554.7±13.5	1.9±0.1
BE05	58.5±1.7	306.0±9.2	130.3±4.9	682.1±25.5	2.2±0.1
BE06	129.4±2.7	340.4±7.1	319.4±8.5	840.6±22.3	2.5±0.1
BE07	132.5±2.5	348.7±6.7	283.9±7.3	747.0±19.1	2.1±0.1

Separated to 4 terms (I~IV)

	Term [DOY] *since 1/1/2007	D _{Total} [mGy]	D _{Total} rate [mGy/day]	H _{Total} [mGy]	H _{Total} rate [mSv/day]	Q _{Total}
I	19 – 111	21.8±0.6	237.2±7.0	58.7±1.5	637.5±16.2	2.7±0.1
Ш	111 – 295	51.6±2.5	280.5±13.4	93.5±4.9	508.3±26.5	1.8±0.1
Ш	295 – 475	58.3±3.0	323.7±16.5	100.2±7.7	556.8±42.7	1.7±0.2
IV	475 – 569	70.9±3.2	377.2±17.1	189.1±9.8	1006.0±52.0	2.7±0.2

Time variations with solar activities

2007~2009: Decreasing the solar activity

Increasing GCR intensity @ 2007→2009

Comparison with ACE-CRIS data (GCR data)

Increasing rate:

 $(D_{IV}/D_{I})_{This work} \sim +160\%$

Exceed over +45%

Increasing rate:

 $(D_{IV}/D_{I})_{ACE-CRIS} \sim +115\%$

Effect of thick shielding inside ISS ??

Comparison with DB-8 detector in ISS

DB-8 data from Benghin et al., 37th COSPAR 2008

DOY since 2007

Time variation of absorbed dose and increasing rate obtained by this work are consistent with the results obtained by DB-8 detector within error bar

→ One factor of dose excess compared with ACE data is thought to be due to the shielding inside ISS or contribution of trapped particles in radiation belt

Summary

- ✓ Using 6 data (BE01~BE07) with different durations between Jan. 2007 and Oct. 2008 (~2yrs), the time variation of dose quantities using passive dosimeters (CR-39+TLD) was verified.
- ✓ Dose quantity from I to IV terms was increase tendency and the increasing rate of absorbed dose is ~+160% (D_{IV}/D_I ratio), which is not consistent with the estimation of GCR intensity increase (~115%) obtained by ACR-CRIS.
- ✓ Increasing rate obtained by this work is good agreement with the data by DB-8 inside same cabin.
 - → The discrepancy with GCR data obtained by ACE might be explained by the effect of thick shielding inside ISS or contribution of trapped particles in radiation belt.

Principle of track detection in CR-39

$$S = \frac{V_t}{V_b} - 1 = f(LET)$$

$$= \sqrt{\frac{16B^2D^2}{(4B^2 - d^2)^2} + 1 - 1}$$

→ Absorbed dose (D)
Dose equivalent (H)