ESA’s Space Radiation and Plasma Monitoring Programmes

P. Nieminen, E. Daly, A. Mohammadzadeh, A. Hilgers
ESA/ESTEC, The Netherlands

P. Bühler, W. Hajdas
PSI, Switzerland
Space Radiation and Plasma Monitoring: Rationale

- Effects of the space radiation and plasma environment are varied and complex: instrument “background”, component & material degradation, SEP, spacecraft anomalies, ...

- New technologies \rightarrow new problem areas

- Modelling: Need for continuous measurements with adequate spatial, energy and particle species coverage
Radiation Environment Monitor (REM)

Two units:

- STRV-1b microsatellite (1994 - 98)
- MIR space station (1994 - 96)

Wealth of data on electron belt dynamism, E-W proton anisotropy,...
Standard Radiation Environment Monitor (SREM)

Optimised Al-Ta “Sandwich structure”.

Simulation outcome: modularity (D3).

Further electronics miniaturisation underway.

Improved:
- Performance
- Cost
- Mass (2.5 kg)
- Volume (2 l)

- Electrons > 0.5 MeV
- Protons > 10 MeV
- Heavy ions qualitatively
SREM Energy Binning

<table>
<thead>
<tr>
<th></th>
<th>Logic</th>
<th>dE Discr. Level [MeV]</th>
<th>Particle</th>
<th>E min [MeV]</th>
<th>E max [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D1</td>
<td>0.085</td>
<td>Proton</td>
<td>20</td>
<td>Inf.</td>
</tr>
<tr>
<td>2</td>
<td>D1</td>
<td>0.25</td>
<td>Proton</td>
<td>20</td>
<td>550</td>
</tr>
<tr>
<td>3</td>
<td>D1</td>
<td>0.6</td>
<td>Proton</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>D1</td>
<td>2</td>
<td>Proton</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>D1</td>
<td>30</td>
<td>Proton</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>D2</td>
<td>0.085</td>
<td>Proton</td>
<td>39</td>
<td>Inf.</td>
</tr>
<tr>
<td>7</td>
<td>D2</td>
<td>9</td>
<td>Ions</td>
<td>Depending on Z</td>
<td>Depending on Z</td>
</tr>
<tr>
<td>8</td>
<td>D1*D2</td>
<td>0.6, 2</td>
<td>Proton coincidence</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>D1*D2</td>
<td>0.6, 1.1-2.0</td>
<td>Proton coincidence</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>D1*D2</td>
<td>0.6, 0.6-1.1</td>
<td>Proton coincidence</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>11</td>
<td>D1*D2</td>
<td>0.085-0.6, 0.085-0.6</td>
<td>Proton coincidence</td>
<td>130</td>
<td>Inf.</td>
</tr>
<tr>
<td>12</td>
<td>D3</td>
<td>0.085</td>
<td>Electron Proton</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>D3</td>
<td>0.25</td>
<td>Electron</td>
<td>0.55</td>
<td>2.3</td>
</tr>
<tr>
<td>14</td>
<td>D3</td>
<td>0.75</td>
<td>Proton</td>
<td>11</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>D3</td>
<td>2</td>
<td>Proton</td>
<td>11</td>
<td>30</td>
</tr>
</tbody>
</table>

D1-D2 Proton Coincidence
SREM

First mission: STRV-1c

Pictures courtesy of DERA Farnborough
Missions with SREM...

...contd...
Missions with SREM...

Rosetta
Mercury Orbiter
Columbus Radiation Environment and Effects Package (CREEP) in TEF
Columbus Radiation Environment and Effects Package (CREEP)

- Unobstructed view to RAM, zenith and a direction perpendicular to these
- Component Technology Test-Bed (CTTB) for memory devices, opto-couplers, comparators,...
- Launch late 2002, mission duration ~3 years.
- Simulations; Geant 4
Under Study...

Charged Particle Telescope (CPT)

- High-fidelity "science" instrument
- Good spatial, temporal and energy resolution
- In-orbit co-ordination facility for SREMs and potentially other monitoring devices
- Phase-A Study by Aboa Space Research, Inc. (ERNE instrument onboard SOHO; AMS collaborators) due to start by end of -99.
- Geant 4 to be used for simulations.
Under Study...

Plasma Environment Monitor (PEM)

- Low weight, low power plasma monitor
- Electrons, ions < 100 keV (spacecraft anomalies due to charging; instrumental background in X-ray detectors).
- This low-energy energy range is not covered by current monitor-type devices
- Space weather effects predictions, spacecraft anomaly analysis, plasma science instruments calibration
Under Study...

Miniature Radiation Monitor (MRM)

- **ESA General Studies**
 - Programme activity: <100 g
 - <0.1 W

- **A degree of e-/p+ and energy resolution required**
 - < 30 kEURO

- **Applications in medical, physics, environmental fields**
 - 1-5 kg
 - 1-5 W

- **Contractor chosen; prototyping activity will be started soon**
 - 100-500 kEURO

4 November 1999

WRMISS Workshop
Conclusions

- ESA has a wide range of on-going radiation and plasma monitoring activities
- Needs of the ISS, science missions, commercial satellites, technology demonstration payloads addressed
- Connection to data and modelling efforts important
- Potential applications in other fields
- Comments, requirements, feedback from space radiation community welcome
- Collaboration, data sharing