Development of compact Tissue Equivalent Proportional Counter (TEPC) for monitoring space radiation in the ISS, Cubesat and Aircraft

Jaejin Lee¹, Uk-won Nam¹, Jeonghyun Pyo¹, Sunghwan Kim², Won-Kee Park¹, Bongkon Moon¹, Hisashi Kitamura³ and Shingo Kobayashi³

¹Korea Astronomy and Space Science Institute
²Cheongju University
³National Institute of Radiological Science
Introduction

- NASA proposed the development of ISS radiation monitoring detectors as a Korea-NASA cooperation program in 2009.

- **KASI (Korea Astronomy Space and Science Institute)** has been funded $200k a year for developing TEPC since 2011 and it will be completed in 2016.

- In 2015, we will launch a cubesat (~3 kg) aboard the TEPC, and in 2017 we will launch a small satellite (~100 kg) for high LET cosmic ray measurements.

- We will also extend our research area to the monitoring space radiation on aircraft altitude.
We have developed several models of TEPC and the instrument is still under improvement.
Brief Description of TEPC

- **Type:** Spherical Tissue Equivalent Proportional Counter
- **Tissue Equivalent Material:** A-150
- **Out Diameter:** 40 mm
- **Inner Diameter:** 30 mm
- **Internal Tissue Equivalent Gas:** 100% \(\text{C}_3\text{H}_8 \)
- **Pressure:** 27.7 torr
- **Simulated Site Diameter:** 2\(\mu \)m
- **Anode:** 30 \(\mu \)m Stainless wire
- **SUS304 Stainless Housing**
- **Diameter:** 54 mm
- **Thickness:** 1.5 mm
Improvement of TEPC

<table>
<thead>
<tr>
<th></th>
<th>Model-2013</th>
<th>Model-2014</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume/Mass</td>
<td>2,624 cm³ / 1.8Kg</td>
<td>1,480 cm³ / 1.5Kg</td>
<td>< 6,000 cm³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 5 Kg</td>
</tr>
<tr>
<td>Power</td>
<td>4.9 W</td>
<td>2.5W (Battery)</td>
<td>Low Power</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>Analog Pulse Processing</td>
<td>Digital Pulse Processing</td>
<td></td>
</tr>
<tr>
<td>Gain Channel</td>
<td>Single Gain</td>
<td>Two Gain Channel (64/1.1)</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>TCP/IP</td>
<td>RS232</td>
<td></td>
</tr>
</tbody>
</table>
Manufacturing
Thermal Vacuum Test

- Temperature Requirement of ISS
 - +5℃~ +40℃
 - Operating Temp: +20℃
 - 1 cycle
Mechanical Analysis

1st mode 249 Hz
2nd mode 352 Hz
3rd mode 635 Hz
4th mode 823 Hz
(NASA requirements: Payload > 100 Hz)

* Quasi-static
Load(Design):
53G (Max. 32MPa)

Max. 0.6MPa (PCB support/SUS304)

* Quasi-static
Load(Design):
53G (Max. 175MPa)

Max. 3.3MPa (PCB support/SUS304)
Vibration Test

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Vibration</td>
<td>3.6 (grms)</td>
</tr>
<tr>
<td>Shock Level Test</td>
<td>9 (g-load)</td>
</tr>
<tr>
<td>Number of Shock</td>
<td>10</td>
</tr>
</tbody>
</table>

TEPC passed successfully the vibration and shock test required for ISS.
Equivalent Dose Calculation Protocol

1. **Cf-252 Standard Source**
2. **Known Equivalent Dose** (H_{cal})
3. **Measured Spectra for Standard Source**
 - High & Low Gain Spectra
4. **High Gain Spect.** + **Low Gain Spect.**
5. **Sum Spectrum in 0.1 - 500keV/\mu m**
6. **Lineal Energy-channel calibration** $y = \frac{E}{I}$
7. **Freq. Probability density**; $f(y)$
8. **Dose-mean lineal energy**; $\bar{y}_D = \int_{y_{\text{min}}}^{y_{\text{max}}} y f(y) dy$

9. **Absorbed Dose**; $D = \frac{2\bar{y}_D}{\sum_{m} N}$
10. **Equivalent Dose (ICRP 60)**; $H_{\text{non-cal}} = DQ$

11. **Spectrum for Unknown Source (Rx)**
 - $f(y) \rightarrow y_D \rightarrow Q \rightarrow D \rightarrow H_{\text{unknown}}$

12. **Calibration Factor** $k_f = \frac{H_{\text{cal}}}{H_{\text{non-cal}}}$
13. **Equivalent Dose**; $H = H_{\text{unknown}} k_f$
HIMAC Experiments

Experimental set up in HIMAC bio beam line
Gas Multiplication

Pulse height spectra and gas multiplication of C-135 MeV/u ions as a function of applied voltage

\[\text{Gas Gain} = \frac{\text{No. of } e \text{ per channel} \cdot \text{proton drop point channel}}{\varepsilon / W} \]
Measured LET Spectra from C-135 beam line

(a) Frequency distribution

\[\bar{y}_F = \int_{y_{\text{min}}}^{y_{\text{max}}} yf(y)\,dy = \frac{\sum_{i} y_i N_i}{\sum_{i} N_i} = 14.0\text{keV/\micro m} \]

(b) \(yd(y) \) micro-dosimetry spectrum

\[\bar{y}_D = \int_{y_{\text{min}}}^{y_{\text{max}}} yd(y)\,dy = \frac{1}{\bar{y}_F} \int_{y_{\text{min}}}^{y_{\text{max}}} y^2f(y)\,dy = \frac{\sum_{i} y_i^2 N_i}{\sum_{i} y_i N_i} = 20.5\text{keV/\micro m} \]
Space Radiation Experiments on LEO satellites

- Korean Cubesat Program
 - Spacecraft Developed by Kyunghee University
 - KASI provides TEPC as a main payload
 - Launch in 2015

- Korean Small Satellite Program
 - Spacecraft Developed by KAIST
 - KASI provides TEPC as an payload
 - Launch in 2017
Dose Estimation in LEO (science mission)

We estimated low altitude dose rate from the Van Allen Probes mission data. Geo-magnetic field effectively shields the most solar energetic protons.

However, what happen for high LET particles that have large gyro-radii?
We have measured space radiation on the altitude of 30,000 ft in the Korean Peninsular with Liulin-6.

In the future, we will do the measurements with our own TEPC.
Conclusions

- A TEPC was designed and fabricated with A-150 ionization cavity, preamp + amplifier circuit, spectrometer, and HVPS for micro-dosimetry in ISS.

- The TEPC has been characterized and calibrated by using C-135MeV/u ions in HIMAC.

- We confirmed that the TEPC was well operated below 100 keV/μm.

Applications
- Cubesat launched in 2015
- Korean small satellite, NEXTSat-1 launched in 2017
- Air Crew Radiation Monitoring

Even though we cannot send our TEPC to ISS, we will measure space radiation on the aircraft altitude (~10 km) and LEO (~700 km). We think these experiment would be valuable in understanding radiation environment at the ISS altitude (~350km).