A Sort-of Tissue Equivalent Proportional Counter (STEPC) for Space Radiation Dosimetry Applications

Eric Benton, Tyler Collums, Rafiqul Islam, Joel DeWitt and Art Lucas

> E. V. Benton Radiation Physics Laboratory Oklahoma State University Stillwater, Oklahoma, USA

Research Objectives

- Evolutionary approach to TE ionization chamber and proportional counter design, fabrication, and testing
- Common 2" φ spherical chamber design
- Alternative Detector/Spectrometer Electronics
- Alternative TE plastics
- Alternatives in fill gas composition and pressure
- Testing of instruments on Near-Space Balloon flights

Design of STEPC

STEPC Features

Similar in design to FarWest LET-SW2 2" single wire counter, but includes:

- built in preamplifier (Cremat CR-110),
- double o-ring resealable container,
- removable ²⁴¹Am check source.

Currently five versions of STEPC:

- A-150 Tissue Equivalent Plastic,
- Nylon,
- Acrylic,
- Polyethylene,
- Polystyrene.

STEPC Prototype Circuitry

STEPC Prototype

exterior

guts

Characterizing STEPCs at the 230 MeV proton beam at the ProCure Treatment Center, Oklahoma City

yD(y) spectra measured by the five STEPCs during exposures to 87 MeV protons at ProCure, comparison with FLUKA Monte Carlo Simulation

Characterizing STEPCs to 500 MeV/n ⁵⁶Fe and 490 MeV/n ²⁸Si beams at HIMAC

Exposures of Polystyrene STEPC to 490 MeV/n ²⁸Si beams at HIMAC: Raw, Lineal Energy, and LET Spectra

LET spectra measured by the five STEPCs during exposures to 490 MeV/n ²⁸Si beams at HIMAC.

LET spectra measured by the five STEPCs during exposures to 500 MeV/n 56 Fe beams at HIMAC.

LET spectra measured by the Nylon STEPC during exposures to 490 MeV/n ²⁸Si beams at HIMAC, rotation about anode wire axis

Conclusions

- Prototype STEPCs have been designed, fabricated and continue to be characterized and calibrated at HIMAC and ProCure.
- Comparison of STEPCs with ionization cavities made of different materials appear to show little difference in response.
- Designed and fabricated self-contained STEPC with acrylic ionization cavity. amplifier + preamp circuit, spectrometer, and HVPS inside container, USB connection to PC104 computer.
- Self-conatined STEPC now being characterized and calibrated at HIMAC and ProCure.
- Self-contained STEPC will be tested on a high altitude balloon mission.

Acknowledgements

- Hisashi Kitamura, Satoshi Kodaira, Nakahiro Yasuda, Yukio Uchihori, Ondrej Ploc, and the staff of the HIMAC
- Yuanshui Zheng, Omar Zeiden, and the staff of the ProCure Proton Treatment Centers and IBA

