ON THE UNCERTAINTY OF LINEAR ENERGY TRANSFER SPECTRA MEASURED WITH TRACK-ETCHED DETECTORS IN THE SPACE

K. Pachnerová Brabcová¹, I. Ambrožová¹, Z. Mrázová¹, ², A. Malušek¹, ³

¹ Nuclear Physics Institute, Academy of Sciences of Czech Republic
² Czech Technical University in Prague
³ Faculty of Health Sciences, Linköping University
THE GOAL

• determination of measurement uncertainty for particular LET spectra

• track-etched detectors as spectrometers of LET in space

• material PADC TD1
LET SPECTRA

• two-stage process of LET spectra determination:

1. **Calibration**: determination of the calibration curve \(L = f(V) \), where \(V = f(\text{track parameters}) \) with particles of known LET

2. **Measurements**: determination of LET spectrum
LET SPECTRA: UNCERTAINTIES

• three categories of independent uncertainties:

 1. uncertainty associated with randomness of particle detection \(u_1 \)
 2. uncertainty of the calibration curve \(u_2 \)
 3. uncertainty of the detector response \(u_3 \)

• resulting uncertainty

\[
\begin{align*}
 u &= \sqrt{u_1^2 + u_2^2 + u_3^2}
\end{align*}
\]
UNCERTAINTIES OF PARTICLE DETECTION

- number of tracks in channel - different due to random nature of particle detection

- Poisson distribution with channel uncertainty \(u_{1i} = \sqrt{N_i} \)

- usually the only considered uncertainty
UNCERTAINTIES OF THE CALIBRATION CURVE

- confidence interval of calibration curve

$u_{2i} = \Delta L \left| \frac{dn_L}{dL} \right| u(L)$

• shifts of peaks in spectrum (uncertainty associated with spectrum channel)
UNCERTAINTIES OF THE DETECTOR RESPONSE

- the LET specific species are associated with random channel number
- Gaussian distribution

\[u_3 \]

note the log x scale (the same std deviation of all Gauss)
METHODS: factors affecting uncertainties

Measured quantities uncertainty
1. measuring with microscope
2. non-uniform etching conditions
3. detector thickness differences
4. differences in operator’s view
5. separation of peak of primary particles (calibration)
6. separation of “the biggest” fission fragments

Calculated quantities uncertainty
7. equation uncertainty
8. reference calibration LET values
9. angle dependence
10. calibration curve model
11. ...
23 samples were irradiated with 252Cf, selection of tracks for analysis:

- perpendicularly impinging fission fragments: $b/a > 0.9$
- heavy fragments ($A \sim 143$) against light ($A \sim 99$): operator-specific routine
Kernel density function of the parameter B corresponding to heavy fragments (dashed line) and normal distribution (full line) with parameters

- $B = 14.86 \mu m$
- $u(B) = 0.28 \mu m$
- relative standard uncertainty: 1.9 %
• V - LET
• HIMAC-BIO
• He, C, Ne, Si, Ar, Fe, Kr
• 31 calibration points
• uncertainty of a, b: normal distribution with parameters a, u(a), b, u(b), u(a,b)
Selection of tracks for analysis:

- $b_{\text{min}} < b < b_{\text{max}}$
- $0.9 < b/a < 1$

The example with measured tracks of 400 MeV/u C
CALIBRATION

- etch ratio calculation
 \[v = \sin^{-1}\left[\frac{B}{2a \sqrt{1 - \frac{b^2}{B^2}}} \right] \]

- sensitivity coefficients
 \[c_1 = \frac{\partial v}{\partial a}, \quad c_2 = \frac{\partial v}{\partial b}, \quad c_3 = \frac{\partial v}{\partial B} \]

- combined variance
 \[u^2_c(V) = c_1^2 u^2(a) + c_2^2 u^2(b) + c_3^2 u^2(B) + 2c_1 c_2 u(a, b) \]
CALIBRATION

<table>
<thead>
<tr>
<th>LET keV.µm⁻¹</th>
<th>V</th>
<th>uᵥ(V)</th>
<th>uᵥ_rel(V) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.06</td>
<td>1.195</td>
<td>0.0307</td>
<td>2.57</td>
</tr>
<tr>
<td>13.06</td>
<td>1.1892</td>
<td>0.0188</td>
<td>1.58</td>
</tr>
<tr>
<td>13.06</td>
<td>1.1338</td>
<td>0.0199</td>
<td>1.76</td>
</tr>
<tr>
<td>14.16</td>
<td>1.2256</td>
<td>0.0225</td>
<td>1.84</td>
</tr>
<tr>
<td>15.89</td>
<td>1.2169</td>
<td>0.0229</td>
<td>1.88</td>
</tr>
<tr>
<td>23.53</td>
<td>1.4226</td>
<td>0.032</td>
<td>2.25</td>
</tr>
<tr>
<td>28.64</td>
<td>1.5045</td>
<td>0.0426</td>
<td>2.83</td>
</tr>
<tr>
<td>36.05</td>
<td>1.5978</td>
<td>0.0457</td>
<td>2.86</td>
</tr>
<tr>
<td>10.85</td>
<td>1.1575</td>
<td>0.0149</td>
<td>1.29</td>
</tr>
<tr>
<td>11.94</td>
<td>1.1793</td>
<td>0.0264</td>
<td>2.24</td>
</tr>
<tr>
<td>18.76</td>
<td>1.3019</td>
<td>0.037</td>
<td>2.84</td>
</tr>
<tr>
<td>31.23</td>
<td>1.3853</td>
<td>0.0373</td>
<td>2.69</td>
</tr>
<tr>
<td>31.23</td>
<td>1.3274</td>
<td>0.0422</td>
<td>3.18</td>
</tr>
<tr>
<td>31.23</td>
<td>1.4717</td>
<td>0.0311</td>
<td>2.11</td>
</tr>
<tr>
<td>31.45</td>
<td>1.475</td>
<td>0.0313</td>
<td>2.12</td>
</tr>
<tr>
<td>32.86</td>
<td>1.4551</td>
<td>0.0453</td>
<td>3.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LET keV.µm⁻¹</th>
<th>V</th>
<th>uᵥ(V)</th>
<th>uᵥ_rel(V) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.75</td>
<td>1.5308</td>
<td>0.0588</td>
<td>3.84</td>
</tr>
<tr>
<td>56.75</td>
<td>1.5864</td>
<td>0.0439</td>
<td>2.77</td>
</tr>
<tr>
<td>56.75</td>
<td>1.5269</td>
<td>0.0342</td>
<td>2.24</td>
</tr>
<tr>
<td>56.75</td>
<td>1.7276</td>
<td>0.0376</td>
<td>2.18</td>
</tr>
<tr>
<td>61.30</td>
<td>1.886</td>
<td>0.1201</td>
<td>6.37</td>
</tr>
<tr>
<td>88.59</td>
<td>2.3063</td>
<td>0.2816</td>
<td>12.21</td>
</tr>
<tr>
<td>95.46</td>
<td>1.8968</td>
<td>0.0865</td>
<td>4.56</td>
</tr>
<tr>
<td>95.46</td>
<td>1.6768</td>
<td>0.048</td>
<td>2.83</td>
</tr>
<tr>
<td>95.46</td>
<td>1.7683</td>
<td>0.0563</td>
<td>3.18</td>
</tr>
<tr>
<td>232.00</td>
<td>4.5008</td>
<td>0.5377</td>
<td>11.95</td>
</tr>
<tr>
<td>320.00</td>
<td>6.1918</td>
<td>0.7271</td>
<td>11.74</td>
</tr>
<tr>
<td>443.34</td>
<td>5.0559</td>
<td>0.4793</td>
<td>9.48</td>
</tr>
</tbody>
</table>
• \(V = f(L) \)
• \(L = f(V) \) constructed as inverse function

\[
u(L) = u(V) \left| \frac{dV}{dL} \right|^{-1}
\]

• should respect physical characteristics of TED: detection threshold, saturation
• different models lead to different confidence intervals
CALIBRATION: DIFFERENT MODELS

- third degree polynomial
- piece-wise linear
DETECTOR RESPONSE

- smearing of „true signals“
- assumption: minor uncertainties

TEST

- convolution with Gaussian distribution – parameters dependent on LET (fit of the calibration data)
- real LET spectrum from ISS: equidistant eight bins
\(u_3 = 0 \)

\[u = \sqrt{u_1^2 + u_2^2} \]
\[u_1(n_\lambda) \]
\[u_2(n_\lambda) \]
\[u_c(n_\lambda) = \sqrt{u_1^2 + u_2^2} \]
<table>
<thead>
<tr>
<th>λ</th>
<th>$n\lambda$</th>
<th>LET (keV.µm$^{-1}$)</th>
<th>relu_1</th>
<th>relu_2</th>
<th>relu_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>2348</td>
<td>8.9</td>
<td>4.6</td>
<td>49.2</td>
<td>49.4</td>
</tr>
<tr>
<td>1.15</td>
<td>2799</td>
<td>14.1</td>
<td>4.2</td>
<td>6.0</td>
<td>7.3</td>
</tr>
<tr>
<td>1.36</td>
<td>1039</td>
<td>22.9</td>
<td>6.9</td>
<td>16.5</td>
<td>27.9</td>
</tr>
<tr>
<td>1.56</td>
<td>774</td>
<td>36.3</td>
<td>8.0</td>
<td>6.6</td>
<td>10.3</td>
</tr>
<tr>
<td>1.76</td>
<td>549</td>
<td>57.5</td>
<td>9.4</td>
<td>2.3</td>
<td>9.7</td>
</tr>
<tr>
<td>1.97</td>
<td>627</td>
<td>93.3</td>
<td>8.8</td>
<td>0.0</td>
<td>8.8</td>
</tr>
<tr>
<td>2.17</td>
<td>470</td>
<td>147.9</td>
<td>10.2</td>
<td>4.4</td>
<td>11.1</td>
</tr>
<tr>
<td>2.38</td>
<td>328</td>
<td>239.9</td>
<td>12.2</td>
<td>16.6</td>
<td>20.6</td>
</tr>
</tbody>
</table>
CONCLUSIONS

• calibration model has to be considered very carefully, with respect to physical properties of detectors (which are?)

• uncertainty associated with detector response is difficult to estimate

• uncertainty associated with angle dependence