MATROSHKA – Overview of 2004 - 2005

T. Berger¹, G. Reitz¹, S. Burmeister², R. Beaujean², Neal Zapp³

¹DLR - Institute of Aerospace Medicine, 51147 Köln, Germany
²Universität Kiel/IEAP, 24098 Kiel, Germany
³JSC, Houston, USA
ESA Project

Project Manager Dr. Reitz, DLR

International Contribution:
15 Institutes
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Günther Reitz</td>
<td>German Aerospace Center, DLR, Cologne, Germany</td>
</tr>
<tr>
<td>Rudolf Beaujean</td>
<td>Christian-Albrechts-Universität Kiel, Kiel, Germany</td>
</tr>
<tr>
<td>M. Luszik-Bhadra</td>
<td>Physikalisches-Technische Bundesanstalt, PTB, Braunschweig, Germany</td>
</tr>
<tr>
<td>V. Shurshakov, Y. Akatov</td>
<td>Institute for Biomedical Problems, IMBP, Moscow, Russia</td>
</tr>
<tr>
<td>P. Olko, P. Bilski</td>
<td>Institute for Nuclear Physics, INP, Krakow, Poland</td>
</tr>
<tr>
<td>J. Palfalvi</td>
<td>Atomic Energy Research Institute, AERI, Budapest, Hungary</td>
</tr>
<tr>
<td>D. O’Sullivan</td>
<td>DIAS, Dublin, Ireland</td>
</tr>
<tr>
<td>D. Bartlett</td>
<td>National Radiological Protection Board, NRPB, Chilton, UK</td>
</tr>
<tr>
<td>N. Vana</td>
<td>Atom Institute of the Austrian Universities, ATI, Vienna, Austria</td>
</tr>
<tr>
<td>Y. Uchihori</td>
<td>NIRS, Chiba, Japan</td>
</tr>
<tr>
<td>S. Yoshitomi, A. Nagamatsu</td>
<td>JAXA, Japan</td>
</tr>
<tr>
<td>F. Cucinotta</td>
<td>NASA JSC, Houston, TX, USA</td>
</tr>
<tr>
<td>B. Atwell</td>
<td>Space Systems Division, Boeing, Houston, USA</td>
</tr>
<tr>
<td>E. Benton</td>
<td>Eril Research Inc., Stillwater, USA</td>
</tr>
<tr>
<td>S. McKeever</td>
<td>Oklahoma State University, Stillwater, USA</td>
</tr>
<tr>
<td>J. Miller and C. Zeitlin</td>
<td>Lawrence Berkeley Laboratory, Berkeley, CA, USA</td>
</tr>
</tbody>
</table>
MATROSHKA

MATROSHKA (MTR) Facility is designed to determine the radiation exposure of an astronaut / cosmonaut during an extravehicular activity (EVA).

Radiation exposure is measured in a Phantom simulating an Human Upper Torso shielded with a Carbon Fibre structure simulating the EVA suit.

Active and Passive Radiation Detectors are distributed over the whole body to determine skin and organ doses.
MATROSHKA

MATROSHKA is the first long duration phantom experiment positioned outside a Space Station.

Results shall give the dose distribution inside a Human Phantom for a better correlation between skin and organ dose and for better risk assessment in future long duration space flight.
MATROSHKA simulates an astronaut during an Extra Vehicular Activity. A human phantom is exposed in a pressurized container which meets the mean shielding thickness of a space suit (0.5 – 1 g/cm²).
MATROSHKA

Phantom Torso + Poncho + Container + MLI
MATROSHKA

DOSTEL

TEPC

SSD

- Eye
- Lung
- Stomach
- Kidney
- Intestine
MATROSHKA

Radiation detectors inside the MATROSHKA facility
MATROSHKA

- EVA: 26. February 2004
- Active instruments: April 2004
- Exposure Time: 1 ½ years
- Back inside ISS: 18. August 2005
MATROSHKA

MATROSHKA

MTR EVA: 26. February 2004
MATROSHKA

MATROSHKA

MATROSHKA

MATROSHKA

MTR Activation of active instruments: April 2004
MATROSHKA

MTR Recovery EVA: 18. August 2005
MATROSHKA
Science and Housekeeping Data
MATROSHKA

Temperature Sensor #1 (Slice 2)
MATROSHKA

Temperature Sensor #2 (Slice 16)

Temperature (°C)

04.04 06.04 08.04 10.04 12.04 02.05 04.05 06.05 08.05
MATROSHKA

Temperature Sensor #3 (Slice 26)
MATROSHKA

DOSTEL / April 04

- GCR – Dose: 296 µGy/day
- Qualityfactor: 3.1 ± 0.3

- SAA – Dose: 256 µGy/day
- Qualityfactor: 1.5 ± 0.4

- Dose: 552 µGy/day
- Dose equivalent: 1.36 mSv/day

JSC / April 04

- GCR – Dose: 277 µGy/day
- Qualityfactor: 3.7

- SAA – Dose: 219 µGy/day
- Qualityfactor: 1.4
Outside ISS measurements (April 2004)

- DOSTEL: ~ 1.3 mSv/day
 ~ 550 µGy/day

- EV-CPDS: ~ 400 µGy/day

Inside ISS measurements (April 2004)

- NASA TEPC: ~ 450 – 550 µSv/day
- TLD´s: ~ 150 – 250 µGy/day
- IV-CPDS: ~ 220 – 270 µGy/day
MATROSHKA

- Radiation exposure during an EVA: ~ 1.3 mSv/day
- Radiation exposure inside the ISS: ~ 0.4 mSv/day

Countrate of the active radiation detector „DOSTEL“ over a period of 16 days
MATROSHKA
OUTLOOK 2005 - 2006
MATROSHKA I

- MATROSHKA Recovery EVA on the 18. August 2005
- MATROSHKA passive detectors to be returned with Soyuz in October 2005
- Passive detectors distributed to investigators ~ November 2005
Preparation for MATROSHKA II already started

Passive detector packages to be uploaded with Progress in December 2005

Passive detector packages to be ready by the end of October 2005
Thanks very much for your attention !!