The solar particle event on 10-13 September 2017
Spectral reconstruction and calculation of the radiation exposure in aviation and space

Daniel Matthiä, Matthias M. Meier, and Thomas Berger
German Aerospace Center (DLR)
Institute of Aerospace Medicine, Cologne, Germany
Background

- Period of very active sun in Sep 2017
- Several X-class flares
- Ground level enhancement 10 Sep 2017
- Dose rate increase measured on the ISS (DOSTEL, ISS-RAD), lunar orbit (CRaTER), Mars (MSL-RAD)

Space Weather

The Solar Particle Event on 10–13 September 2017: Spectral Reconstruction and Calculation of the Radiation Exposure in Aviation and Space

Daniel Matthiä, Matthias M. Meier, and Thomas Berger

1German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
The September 2017 events

- GOES-15 proton flux in Sep 2017
- GOES-15 X-ray flux
- Neutron monitor increase
Energy spectra

- Power law in rigidity, parameters J_0 and γ:

$$j(R) = J_0 \cdot (R/\text{GV} \cdot \text{c}^{-1})^{-\gamma}$$

- Double power law in rigidity (Band function), parameters J_0, γ_1, γ_2, R_0:

$$J(> R) = J_0 \cdot \left(\frac{R}{\text{GV} \cdot \text{c}^{-1}} \right)^{-\tilde{\gamma}_1} \exp \left(-\frac{R}{R_0} \right) \quad \text{for } R \leq (\tilde{\gamma}_2 - \tilde{\gamma}_1)R_0$$

$$J(> R) = J_0 \cdot \left(\frac{R}{\text{GV} \cdot \text{c}^{-1}} \right)^{-\tilde{\gamma}_2} \left(\frac{(\tilde{\gamma}_2 - \tilde{\gamma}_1)R_0}{\text{GV} \cdot \text{c}^{-1}} \right)^{(\tilde{\gamma}_2 - \tilde{\gamma}_1)} \exp(\tilde{\gamma}_2 - \tilde{\gamma}_1) \quad \text{for } R > (\tilde{\gamma}_2 - \tilde{\gamma}_1)R_0$$

Fit 1h averaged GOES data between 10 Sep 2017 1630 UTC and 12 Sep 2017 2230 UTC
Fit of primary particle spectra

- Initial phase
- Late phase
- Event average
Spectral parameters during the event

- Absolute intensity
- Spectral index
- Turn over rigidity/energy
- Modelled and measured integral proton flux
- Modelled and measured neutron monitor count rate increase
Calculation of doses during the event

- Interplanetary space (no magnetic shielding):
 - 1 g/cm2 and 30 g/cm2 spherical shielding
 - Dose in Si, organ doses

- Mars surface (vertical column depth 23 g/cm2)
 - Dose in Si, organ doses

- Aviation altitude (high latitude/no magnetic shielding, 40 kft, PANDOCA model)
 - Effective dose, dose in Si

- ISS, Columbus/DOSTEL shielding (credit: N. Stoffle, K. Lee, SRAG)
 - Dose in Si
Calculated doses during the event
Interplanetary space

- **30 g/cm²:**
 - Calculated dose in Si: 5.3 mGy and dose in skin 3.7 mGy / 8.3 mSv
- **1 g/cm²:**
 - Calculated dose in Si: 1.6 Gy and dose in skin 0.42 Gy / 0.9 Sv
- **CRaTER, lunar surface:** 0.8–0.9 Gy; skin dose 1.5 Gy-Eq (Schwadron et al., 2018, Space Weather)
Calculated doses during the event
Mars surface (for Earth event)

- Calculated dose in Si 1.1 to 1.2 mGy, skin: 2.2 to 2.3 mSv
- MSL-RAD 418 μGy (Zeitlin et al, 2018, GRL)
Calculated doses during the event
Aviation altitude

- Dose in Si ≤0.5 μGy/h, effective dose ≤3 μSv/h (40% GCR background)
- Kataoka et al. (2018), *Space Weather* have estimated a maximum rate of the effective dose of approximately 3 μSv/h at 12 km (≈39,000 ft)
- 10 h at 40 kft: 25 μSv (≈ 35% of the GCR background, 72 μSv)
- see also Copeland et al. (2018), *Space Weather*
At ISS, Columbus shielding

adapted from *Berger et al.* (2018), *Space Weather*

GOES proton flux

RAD/DOSTEL dose rate
68 μGy / 146 μGy

Calculated dose rate
110 μGy

Cut-off rigidity R_c
Magnetic shielding/cut-off rigidity along the ISS trajectory

10 Sep
~1730UTC to 2100UTC

11 Sep
~0530UTC to 0900UTC
Summary

• Excellent opportunity for model validation

• 10 Sep 2017 event is well described by a double power law in rigidity

• Insignificant event integrated doses
 • Except for interplanetary space 1 g/cm² shielding (~0.9 Sv skin dose) → unrealistic scenario
 • Aviation < 25 µSv (E)
 • ISS, Columbus < 110 µGy (Si)
 • Mars < 2.3 mSv (skin)
 • Interplanetary, 30 g/cm² < 8.2 mSv (skin)
Event integrated doses

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Interplanetary space</th>
<th>Mars surface</th>
<th>Aviation integrated over first 10 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 g/cm²</td>
<td>30 g/cm²</td>
<td></td>
</tr>
<tr>
<td>Power law</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si mGy</td>
<td>6,136.0</td>
<td>4.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Skin mGy</td>
<td>1,070.0</td>
<td>3.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Skin mSv</td>
<td>3,128.0</td>
<td>8.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Double power law</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si mGy</td>
<td>1,622</td>
<td>5.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Skin mGy</td>
<td>419.5</td>
<td>3.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Skin mSv</td>
<td>917.6</td>
<td>8.3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

			40,000 ft
Si mGy			
Skin mGy			
Skin mSv			
E (ICRP103) μSv			24.8
E (ICRP103) μGy			4.1

Note. For interplanetary space and Mars, the dose rates were integrated between 10 September 2017 16:30 UTC and 12 September 2017 22:30 UTC for a silicon slab (Si) and for the skin dose using the ICRP 123 (ICRP, 2013) conversion coefficients. For aviation the integration was restricted to the first 10 hr of the event. E is the effective dose after ICRP 103 (ICRP, 2007).
Calculated doses during the event

(a) Free Space
- 1 g/cm², skin, double power law
- 1 g/cm², Si, double power law
- 30 g/cm², skin, double power law
- 30 g/cm², Si, double power law

(b) Mars Surface
- skin, power law
- skin, double power law
- Si, power law
- Si, double power law

(c) Earth, 40000ft
- dE_{103}/dt, power law
- dE_{103}/dt, double power law
- dD_{0}/dt, power law
- dD_{0}/dt, double power law