

Relative nuclear abundances, LET and dose rates at various locations and configurations in ISS from the ALTCRISS experiment.

18th WMRISS, Budapest, 4-9-2013

Christer Fuglesang KTH & ESA

On behalf of Oscar Larsson, KTH and Marco Casolino, RIKEN & INFN sect. Roma Tor Vergata with the ALTCRISS collab:

O Larsson1, VV Benghin2, M Casolino3,4, IV Chernikch2, L di Fino3,5, C Fuglesang1, M Larosa3,5, B Lund-Jensen1, L Narici3,5, IVNikolaev2, VMPetrov2, P Picozza3,5, C de Santis3,5 and V Zaconte3,5 IRoyal Institute of Technology, Albanova University Center, SE-10691, Stockholm, Sweden 2Institute for Biomedical Problems, Moscow, Russia 3INFN sect. Roma Tor Vergata, Rome, Italy 4RIKEN, Wako, Saitama, Japan 5University of Rome Tor Vergata, Rome, Italy

The Alteino/SilEye-3 detector on ISS between 2002 and 2009

Polyethylene shields 5 g/cm²

- 8 x 380 µm Si-planes 1.5 cm apart (2.5 between 4&5)
- 32 strips pitch 2.5 mm
- 2 x 1 mm scintillators for trigger (<1 MIP)
- total geometrical factor: 45 cm²sr

3 Different Data cuts used

- The angle φ to the detector xy-plane for the impinging particle is calculated by reconstructing the position of the track in the detector for both x-and y-views. If this is possible, energy is normalised by cos(φ), otherwise the event is rejected.
- To exclude large shower events in the detector a maximum number of strip activations per event was less than 32 (out of 256). An average of 4 strip activations per layer was deemed acceptable for a "single track" event.
- The difference in detected energy in the first and last planes may not differ more than 20%.
 This selects particles with kinetic energy above ≈ 60 MeV/n.

ISS coordinate system and Alteino positions

Data sets used for these analyses

Set	Position	Orien-	Shiel-	Time	Altitude
		tation	ding	YYYY-MM-DD+DD	[km]
902	Pirs	ΧŶ	No	2005-12-26 + 11.2 d	348
903	Pirs	ΧŶ	Yes	2006-01-08 + 15.4 d	347
907	Z-P-CC	Ŷ	Yes	2006-03-16 + 21.1 d	345
910	Z-P-CC	Ź	Yes	2006-05-17 + 9.31 d	342
925	Z-MC	Â	Yes	2007-05-22 + 17.2 d	335
930	Z-MC	Â	No	2007-06-27 + 21.0 d	333
933	Z-MC	Ź	No	2007-08-07 + 20.6 d	341

In Pirs

Zvezda Medical Cabinet - X

Port Crew Cabin - Ź

Number of events vs sum of ADC-counts (over all planes)

Fit to multi-Gaussian function

Landau vs Vavilov vs Gauss

Gauss when very thick (κ >10) but already κ >1 start appraoch Our case κ around 4

In addition, electronic noice

Excellent linearity of the detector

Still excellent after 5 years in space Correlation coefficient R²=0.99994

Rates of all particles and Z₂₆

P.

Solar Cycle and Altitude variations

Single particle rates corrected for solar cycle variation

Cosmic rays hourly count rate

Altitude variation ca 100 m /day

Average altitude for data sets: 333 – 348 km During a single data set, varies up to 2 km

For particle rates, within datasets, see no change with altitude

Dose rates much more sensitive to altitude, due to SAA dependence

No correction for altitude made

Integrated flux [(cm²sr s)⁻¹]

1.5

0.5

Integrated flux [(cm²sr s)^{-†}

3.5

STE Flux 7 >6 Elux *

STE Flux

72h interval

Flux rates for all data sets

STE = Singel Track Event, i.e. all particels

910 probably lowest amount of material in front of detector of the Zvezda sets

> 925 most material in front

	B	<u> </u>	<u> </u>				
Set	Position	Orien-	Shiel-	Time	STE Flux	STE Flux	Altitude
		tation	ding	YYYY-MM-DD+DD	[(s cm ² sr) ⁻¹]	normalised	[km]
902	Pirs	ΧŶ	No	2005-12-26 + 11.2 d	$4.0 \cdot 10^{-3}$	8.0 · 10 ⁻³	348
903	Pirs	ΧŶ	Yes	2006-01-08 + 15.4 d	$2.7 \cdot 10^{-3}$	4.1 · 10 ^{−3}	347
		•					
907	Z-P-CC	Ŷ	Yes	2006-03-16 + 21.1 d	2.6 · 10 ⁻³	$3.1 \cdot 10^{-3}$	345
910	Z-P-CC	Ź	Yes	2006-05-17 + 9.31 d	$4.9 \cdot 10^{-3}$	5.9 · 10 ⁻³	342
925	Z-MC	Ŷ	Yes	2007-05-22 + 17.2 d	1.5 · 10 ⁻³	1.5 · 10 ⁻³	335
930	Z-MC	Â	No	2007-06-27 + 21.0 d	$2.9 \cdot 10^{-3}$	2.9 · 10 ⁻³	333
933	Z-MC	Ź	No	2007-08-07 + 20.6 d	$1.4 \cdot 10^{-3}$	$1.4 \cdot 10^{-3}$	341

"Normalised" is to solar cycle data set 933

No Shield vs. Shield (Polyethylene 5 g/cm²)

302	1 11 3		INU	2000-12-20 · 11.2 u	040
903	Pirs	ΧŶ	Yes	2006-01-08 + 15.4 d	347

Relative abundances of nuclei speices

LET – spectra (prelimnary)

(Alteino collab + T. Berger, A. Nagamatsu, G. Reitz)

LET events in Si Alteino in *Pirs* vs ALTEA in *Destiny* Ŷ-dir

• More material around ALTEA than Alteino (in this positon)

- PADLES (CR-39 & TLD here only CR-39 used) placed with Alteino
- Alteino and ALTEA require higher min energy of particle for read-out

LET rate (prel) vs Single Track Flux for the various data sets

Set	Position	Orien-	Shiel-	Time	STE Flux	LET rate
		tation	ding	YYYY-MM-DD+DD	[(s cm² sr) ⁻¹]	$[keV/(cm^2sr\ s\ \mu m)]$
902	Pirs	ΧŶ	No	2005-12-26 + 11.2 d	4.0 · 10 ⁻³	$2.18 \cdot 10^{-1}$
903	Pirs	ΧŶ	Yes	2006-01-08 + 15.4 d	2.7 · 10 ⁻³	$1.76 \cdot 10^{-1}$
907	Z-P-CC	Ŷ	Yes	2006-03-16 + 21.1 d	2.6 · 10 ⁻³	$5.03 \cdot 10^{-2}$
910	Z-P-CC	Ź	Yes	2006-05-17 + 9.31 d	4.9 · 10 ⁻³	$1.60 \cdot 10^{-1}$
925	Z-MC	Â	Yes	2007-05-22 + 17.2 d	1.5 · 10 ⁻³	$1.03 \cdot 10^{-1}$
930	Z-MC	Â	No	2007-06-27 + 21.0 d	2.9 · 10 ⁻³	$1.20 \cdot 10^{-1}$
933	Z-MC	Ź	No	2007-08-07 + 20.6 d	1.4 · 10 ⁻³	$1.98 \cdot 10^{-1}$

Dose rates (preliminary)

For Dose rate (D_r) and Equivalent Dose rate (H_r) the LET spectrum in Silicon (LET_{Si}) has been recalculated to LET in water (LET_{H_2O}) by equation (1), according to [3].

$$Log(LET_{H_2O}) = -0.2902 + (1.025 \cdot Log(LET_{Si}))$$
(1)

It then follows the D_r in [Gy/s] is calculates as:

$$D_r = 1.6 \cdot 10^{-9} \cdot 4\pi \cdot \int LET_{H_2O}(E) \cdot E \cdot dE \tag{2}$$

and the H_r , in [Sv/s], by multiplying the LET-value with a quality factor Q, according to:

Location	Orientation	Panel	Shielding	D_r [$\mu Gy/day$]	H_r [$\mu Sv/day$]	Q-average
Pirs	\hat{XY}	401	No	33.1	211	1.40
Pirs	\hat{XY}	401	Yes	26.5	197	1.56
Z-PCC	\hat{Y}	239	Yes	27.9	231	1.66
Z-PCC	\hat{Z}	333	Yes	37.3	209	1.32
Z-MC	\hat{X}	326	No	19.9	184	1.81
Z-MC	\hat{X}	326	Yes	22.1	154	1.46
Z-MC	\hat{Z}	326	No	22.6	240	2.12
ALTEA	\hat{X}	-	No	28	68.2	1.2
ALTEA	\hat{Y}	-	No	30.0	125	1.3
ALTEA	\hat{Z}	-	No	27	110	1.3
PADLES	-	-	Yes	250	480	1.9
PADLES	-	-	No	260	500	1.8
CR-39 only	-	-	Yes	33	170	?
TLD600	-	-	Yes	230	-	-
TLD700	-	-	Yes	210	-	-
TLD600	-	-	No	250	-	-
TLD700	-	-	No	230	-	-

$H_r = 1.6 \cdot 10^{-9} \cdot 4\pi \cdot \int$	$\int LET_{H_2O}(E) \cdot E \cdot Q(E) \cdot dE$	(3)
---	--	-----

Multiplicity and dose rates

Table 3. Contribution count rate depending on event multiplicity. Datasets with an * have additional 5 g/cm² polyethylene. Values in % of LET events.

Multip.	Pirs	Pirs*	Z-PCC \hat{Y}^*	Z-PCC \hat{Z}^*	Z-MC \hat{X}	Z-MC \hat{X}^*	Z-MC \hat{Z}^*
5-10	98.0	96.3	96.3	97.6	85.4	96.1	84.2
11-15	1.16	2.24	2.18	1.44	3.19	2.46	4.02
16-20	0.377	0.717	0.728	0.451	0.967	0.807	1.31
> 20	0.371	0.659	0.644	0.404	0.896	0.610	1.11

Table 4. Contribution to dose rate depending on event multiplicity. Datasets with an * have additional 5 g/cm² polyethylene. Values in % of LET events.

		with an	nave additione	a o g/em poij	congrene. ve	nuco m 70 or i	Hi evento.	_
Multip.	Pirs	Pirs*	Z -PCC \hat{Y}^*	Z -PCC \hat{Z}^*	$Z-MC\hat{X}$	$Z-MC\hat{X}^*$	$Z-MC\hat{Z}^*$	_
5-10	91.8	88.4	87.8	90.8	81.3	85.8	78.7	
11 - 15	4.77	6.94	7.28	5.65	9.99	8.86	11.1	
16-20	1.56	2.00	2.18	1.64	3.10	2.71	3.78	
> 20	1.81	2.54	2.66	1.83	3.10	2.59	4.54	
								-

Table 5. Contribution to dose equivalent rate depending on event multiplicity. Datasets with an * have additional 5 g/cm² polyethylene. Values in % of LET events

Multip.	Pirs	Pirs*	Z-PCC \hat{Y}^*	Z-PCC \hat{Z}^*	Z-MC \hat{X}	Z-MC \hat{X}^*	$Z-MC\hat{Z}^*$
5-10	78.3	75.9	75.0	74.5	70.6	68.0	67.7
11-15	12.3	14.2	14.6	15.6	18.3	19.9	17.9
16-20	4.43	4.12	4.54	4.73	5.71	6.04	6.23
> 20	4.96	5.75	5.74	5.18	5.20	6.04	7.91

Simulation of detector on-going, but persistent problem with GEANT4 for δ -electrons

Probability distribution for multiplicity in layer 2, simulated data compared with space data.

Summary

- Alteino ("small Altea") took data at several locations and orientations in the Russian Segment of ISS between 2002 and 2007
- 7 data sets from 2005, 2006 and 2007 analysed, with and without polyethylene shields of 5 g/cm2
- Nuclei identified between C and Fe
- Fragmentation in ISS material seen by increased odd, low-Z nuclei; Fe relative abundance seems lower
- Rates of $Z \ge 6$ decrease with shielding
- Preliminary LET spectra agree as expected with other data
- Large relative contribution to LET from high-multiplicity events

Acknowledgement: This experiment was supported in various ways by ESA, ASI, INFN and RSA