Overview of TEPC for high LET Radiation Monitoring in Complex Radiation Field

Uk-Won Nam, Jae Jin Lee, Jeonghyun Pyo, Bong-Kon Moon, Dae-Hee Lee, Youngsik Park Korea Astronomy and Space Science Institute

Chang Hwy Lim, Myungkook Moon Korea Atomic Energy Research Institute

Sunghwan Kim Cheongju University

Introduction Characteristics of portable TEPC Calibration of portable TEPC Summary and Future Works

Introduction

Background

- NASA proposed radiation monitoring in ISS as a NASA-Korean government cooperation program in 2009.
- KASI (Korea Astronomy Space and Science Institute) has been funded for developing a spherical type TEPC since 2011.
- Our goal
 - Development and characterization of a portable TEPC which could monitor the radiation in ISS
- Requirements
 - Measurable LET range: 0.2 300 keV/um
 - Mass: < 5kg
 - Volume : < 6000 cm³

Tissue Equivalent Proportional Counter

Specification

- Measurable range: 0.2 300 keV/um
- Detector wall
 - A-150 sphere
 - inner diameter : 30 mm
 - Thickness : 5.0 mm
- TE Gas
 - 55% C₃H₈, + 39.6% CO₂ + 5.4% N₂
 - Gas Pressure : 27.7 torr
 - Site diameter : 2 μm
- Detector Housing
 - SUS304
 - Housing diameter : 70 mm
 - Thickness : 1.0 mm

Portable TEPC

- Volume : 2,624 cm³
- Weight : 1.8Kg

Charge Sensitive Pre amp.

Fig. 6.1. Typical RC feedback charge sensitive preamp.

Main Electronics Design

K

한국천 Korea Astronomy

& Space Science Institute

SUN MAY 19 17:27:12 2013

Auto ₹ 4 107♥

Agilent Technologies

4 500⊽/

-🔆 0.0s

10.00%/

2007/

Calibration of portable TEPC

Channel calibration using alpha source

- Using Am-241 5.5MeV a source
- Range of Lineal Energy : 0.2 ~ 300 keV/µm
- Determine the calibration factor of TEPC using neutron source
 - Using Cf-252 neutron source at KRISS
 - Determine the calibration factor of the TEPC

Channel Calibration of TEPC using ²⁴¹Am

- Microdosimetry
 - Lineal Energy (y, $keV/\mu m$) = E / mean chord length(l)
 - TEPC : mean chord length = 2d/3
 - Bias voltage : 950 V
 - Peak channel of a particle 863
 - Satisfy measurement range : 0.2~300 keV/um
 - Lineal Energy / MCA channel
 - ineal Energy / MCA channel Ea : LET of a particle in tissue equivalent material (86.5 ke $\frac{y}{\sqrt{\mu}} = \frac{E_{\alpha}}{2d} \cdot \frac{3}{2d}$
 - I α : Peak channel of α particle on MCA

	Peak (ch)	Resolution of Channel (keV/um-ch)	Max. Range @2048 ch (keV/um)
	254	0.51	1046
R	470	0.27	565
Sec.	863	0.16	326
	1008	0.12	263
	1300	0.10	204

 $= 0.16 \ keV / \mu m - ch$

Neutron Source at KRISS

- Cf-252 standard Neutron Source at KRISS (Korea Research Institute of Standards and Science)
- Neutron flux : $2.36 \times 10^8 \text{ cm}^{-2} \text{s}^{-1}$ (2012.11.09)
- Dose rate : 53.9 mSv/hr

Calibration of TEPC using Cf-252

Process of Equivalent Dose Calibration

Neutron Beam Experiment using Cf-252

$$H = QD = k_f R = k_f \int_{h_{min}}^{h_{max}} q(h) \cdot h \cdot n(h) dh$$
$$k_f = \frac{QD}{\int_{h_{max}}^{h_{max}}} = 3.59 \times 10^{-4} \,\mu \text{Sv/R}$$
$$\int_{h_{min}}^{h_{max}} q(h) \cdot h \cdot n(h) dh$$

Measured Lineal Energy Spectrum of Cf-

Summary and Future Works

- The Engineering model of portable TEPC was designed and fabricated with A-150 ionization cavity, amplifier + preamp circuit, spectrometer, and HVPS.
- Portable TEPC have been characterized and calibrated by using Am-241 and Cf-252.
- We experimently confirmed that the TEPC was well operated below 100 keV/μm.
- Future Works
 - Development of Qualification TEPC model
 - Calibration in the range of high LET radiation in HIMAC
 - We hope that the TEPC will Launch and dosimetry in ISS.
 - More compact, lightweight and low power consumption for CubeSet application (TEPC + RadFET)
 - Future Korean Lunar program (2020s)
 - We are looking for more science applications

Proposed Missions of CubeSet

- •Simulation of dose distribution after Solar Proton events (2013. 4. 11.) using RBSP data
- •Dose level is high between 1000 km and 3000km
- •Space radiation dosage is rapidly increased near 1000 km

Proposed Missions of CubeSet

- : Measurement of total dose &
 - LET spectrum in orbit
- : Measurement of magnetic field of Earth

Thank you for your attention !

