ESTIMATION OF THE DOMINANT ION COMPOSITION IN SPACE USING THE LIULIN AND PHITS SIMULATIONS

Tsvetan Dachev, Ondrej Ploc, Lembit Sihver

Solar - Terrestrial Influence Laboratory, BAS, Sofia, Bulgaria Nuclear Physics Institute, CAS, Prague, Czech Republic Chalmers University of Technology, Göteborg, Sweden

OUTLINE

- Examples of Energy deposition spectra onboard spacecraft measured with Liulin
- Energy spectra of galactic cosmic rays generated by SPENVIS
- Energy deposition spectra in silicon diode calculated with PHITS

EXAMPLES OF THE MOUNTING OF LIULIN TYPE INSTRUMENTS IN SPACE

Biopan-5/6

Foton-M3/M3

Chandrayaan-1

Detector

Liulin instrument

Platform

Satellite

EXPOSE-E/R

WRMISS 2013 Budapest

CHARACTERIZATION OF THE TYPE OF INCIDENT IONS BY THE SHAPE OF THE SPECTRA IN THE GCR

Foton M2; R3D-B2; June 1-12 2005; 1.81 g/cm² Foton M3; R3D-B3; Sept.14-26 2007; 0.75 g/cm² Foton M3; Liulin-Photo; Sept 14-26 2007; >5 g/cm² ISS; R3DE; 20 Febr.-31 Decemb. 2008; 0.4 g/cm²

THE SAA SPECTRUM SHAPE IS SIMILAR IN ALL SPACE EXPERIMENTS. PROTON MAXIMUM MOVES IN DEPENDENCE BY THE SHIELDING OF THE INSTRUMENT

ISS: MDU#4: July 6-13 2001 ISS; R3DE; 20 Febr.-13 March 2008 Foton M2; R3D-B2; June 1-12 2005 Foton M3; R3D-B3 & Liulin-Photo Sept.14-26 2007 1E+2 1E+1 Dep. Dose (uGy/h) 1E+0 1E-1 R3DE; Ch15>50; 50 MeV R3D-B2; Ch15>50; 55 MeV R3D-B3; Ch15 >50; 55 MeV MDU#4; Ch15>20; 100 MeV 1E-2 Liulin-Photo: Ch15>10: 80 MeV 100.0 10.0 1.0 WRMISS 2013 Budapest cident energy (MeV)

Spacecraft, Instrument	Shielding g/cm²	Mean Energy MeV
ISS, R3DE	0.4	50
Foton M3, R3D-B3	0.75	55
Foton M2, R3D-B2	1.85	55
Foton M3, Liu-Photo	>5	80
ISS, MDU#4	> 20	100

The proton mean energy maximum of the SAA spectrum moves toward lower energies when the shielding thickness of the instrument is lower.

CHARACTERIZATION OF THE TYPE OF INCIDENT IONS BY THE SHAPE OF THE SPECTRA IN THE REGION OF SAA

Explanation of the shape of the spectrum with 2 maximums created by protons and helium ions. About 3% of all counts in SAA are created by Helium ions and protons falling at large angle toward the detector*.

*Presented by Dachev at WRMISS-13 in Krakow, Poland in 2008 <u>http://wrmiss.org/workshops/thirtee</u> <u>nth/Dachev_Liulin.pdf</u>

1/26/2014

VARIATIONS OF SPECTRUM SHAPES OBTAINED BY RADOM INSTRUMENT ON CHANDRAYAAN-1 SATELLITE AT DIFFERENT ALTITUDES IN THE INNER RADIATION BELT

PRELIMINARY PHITS SIMULATIONS

WHY PRELIMINARY?

- Did I use the last trapped proton model (AP9)?
- NO
- Did I use the last GCR model (Badhwar-O'Neill 2011)?
- NO
- Did I use correct angular distribution of source?
- NO (we ignored the effect of the Earth's shadow, the angular dependence of the geomagnetic transmission factors and the East–West asymmetry in SAA)
- Did I use detail geometry of spacecraft, detector, position, etc.?

•NO

Because I used model spacecraft (aluminum cylinder) at flight orbit of ISS and spectra generated by SPENVIS. Detail simulation of a certain experiment is under construction ...

Spectra generated by SPENVIS using the flight parameters of ISS Orbit inclination 51.6°, apogee = 360km, perigee = 340km, solar minimum, duration: 100 days

PROJECTED RANGE AND ELECTRON STOPPING POWER IN SILICON FOR SELECTED IONS

TWO EXTREME ANGULAR DISTRIBUTIONS PARALLEL BEAM AND ISOTROPIC SOURCE

Isotropic radiation field:

• $\sum_{j} l_{j} \dots$ sum of all chord lengths inside the active volume V

 $\Phi = \frac{1}{V} \sum_{j} l_{j} = \frac{N \cdot \bar{l}}{V} = \frac{N}{A/4} \cdot \bar{l} = \sum_{j} l_{j} / N \dots \text{mean chord length}$ A ... area of the body's surface

l = 4V/A... came from The Cauchy's Mean Value Theorem, valid for convex objects in isotropic radiation field

	Φ / cm⁻²		
	Isotropic	Parallel	
	r.f.	beam	
Liulin	N/1.045	N / 2	

Values were verified with PHITS in a simple isotropic radiation field

15th WRMISS, Roma, 7-9 September 2010

What is PHITS?

Particle and Heavy Ion Transport code System

Capability

Transport and collision of all particles over wide energy range

in 3D phase space with magnetic field & gravity neutron, proton, meson, baryon electron, photon, heavy ions 10⁻⁴ eV to 100 GeV/u

All-in-one-Package

All contents of PHITS (source files, binary, data libraries, graphic utility etc.) are fully integrated in one package

OECD/NEA Databank, RSICC (USA, Canada etc.) and RIST (Japan)

NSC - NATIONAL SUPERCOMPUTER CENTRE IN LINKÖPING SWEDEN

Name Type Cores Usage In use since

Triolith Cluster 19200 SNIC Jul 2012

- 1200 compute nodes
- Each node: HP SL230s equipped with two Intel E5-2660 (2.2 GHz Sandybridge) processors with 8 cores each, i.e 16 cores per node.
- theoretical peak performance 338 Tflops/s
- The operating system is Linux (CentOS 6.x x86_64).

Project	Project Title	PI	Start Date	End Date
SNIC 001/12-65	Study of high-LET radiation-produced radical species and induced oxidative damage on DNA in deep space	Lembit Sihver	2012-03-27	2013-04-01
SNIC 2013/1- 132 Prezentace činnosti	Monte Carlo simulations of health risks to normal tissues from the use of minutem roce existing and emerging techniques for radiation	Lembit Sihver	2013-04-12 / Protective curtains	2014-05-01 26 January 2014

PHITS SIMULATION GCR SPECTRA

Beam Al wall Si diode

CONCLUSIONS

Estimation of the dominant ion composition

- For Edep < 6MeV: energy deposition spectra are equal to incident deposition spectra. The estimation of LET is complicated due to unknown length even for beam impinging the diode vertically.
- For Edep > 6MeV:
 - GCR: local maxima observed in GCR spektra cause the different slope of the energz deposition spectra
- Estimation of **fluence** with Liulin is different for different angular distribution of radiation field. The factor that divides the number of events is between one and two.

1/26/201

FUTURE WORK

- Shall we use the last trapped proton model (AP9)?
- YES
- Shall we use the last GCR model (Badhwar-O'Neill 2011)?
- YES
- Shall we use correct angular distribution of source?
- YES
- Shall we use detail geometry of spacecraft, detector, position, etc.?

YES

For simulation of a certain experiment with certain conditions.

It is a subject of our bilateral colaboration

THANK YOU FOR ATTENTION

