REFINEMENT OF MSL-RAD DOSE RATE MEASUREMENTS IN CRUISE AND ON THE MARTIAN SURFACE

Cary Zeitlin, Southwest Research Institute On behalf of the MSL Science Team

RAD Sensor Head Overview

- 3-element silicon detector telescope (A, B, C).
- Csl scintillator (D).
- Plastic scintillators (E, F).
- D and E detect neutrals (veto if other detectors hit).
- D and E → 3 diodes each for light collection.
- Hits in F reject charged particles from the side or from below.

Published Cruise Results

Pions/included in transport	Dose rate (mGy/day)	Dose equivalent rate (mSv/day)	< Q >
No	0.429	1.69	3.95
Yes	0.507	1.70	3.53
No	0.366	1.72	4.69
Yes	0.445	1.80	4.05
	$\textbf{0.481} \pm \textbf{0.080}$	$\textbf{1.84} \pm \textbf{0.33}$	3.82 ± 0.25
	Pions/included in transport No Yes No Yes	Pions/included in transport Dose rate (mGy/day) No 0.429 Yes 0.507 No 0.366 Yes 0.445 0.481 ± 0.080	Pions/included in transport Dose rate (mGy/day) Dose equivalent rate (mSv/day) No 0.429 1.69 Yes 0.507 1.70 No 0.366 1.72 Yes 0.445 1.80 O.481 ± 0.080 1.84 ± 0.33

- GCR dose rate, dose eq. rate, and <Q> were based on B only.
- 17% uncertainty in dose rate, 6.5% in <Q>, 18% in dose equivalent rate.
- GCR dose rate in E was
 0.461 ± 0.092 mGy/day (± 20%).
 - Supports B detector result.

Can We Improve Accuracy?

Accuracy affected by:

- Threshold settings.
- Onboard calibration.
- Background from Curiosity's radioisotope thermoelectric generator (RTG).
- Silicon to tissue conversion for B dose.
- Hard to understand without context, so next several slides are very detailed.

Dosimetry Triggers

- B dosimetry == hit above ~ 60 keV in B.
- E dosimetry == coincidence of hits in 2 of 3 diodes.
 - Coincidence requirement rejects events where signal is from direct hit, not scintillator.
 - Without coincidence, high rate of RTG γ's.
- No directional requirement.

Data Processing Level 2

Onboard "L2" processing:

- Applies calibration, determines "detector energy" according to the "gain selection" algorithm.
- Performs temperature corrections.

Level 3 Processing

- L3 processing:
 - Data compression.
 - Histograms, including dosimetry.
 - Decides which pulse height records to store.
 - Not all can be sent to Earth due to telemetry limits.
 - Priority scheme selects most important events.
 - Get ~ 100% of particles in telescope FOV but small fraction of dosimetry triggers.
 - Have to use dosimetry histograms.

Calibration – Part of L2

Onboard table has pedestals & gains.

- Level 2 applies these to get ΔE per channel.
- Each detector has 4 (Si) or 6 (scint's) readout channels with different gains.
 - Combine to get a single "detector energy."
 - A, B, C use ΔE from highest-gain unsaturated channel.
 - For D and E, combine signals from at least 2 of 3 diodes.
 - Improves resolution (reduce position dependence).

Dosimetry Histograms – L3

- On every B dosimetry trigger, the L2 ΔE is added to a running total.
- Separate running total for E triggers.
- Totals stored every 1/16th of an observation.
 - E.g., if observation duration is 32 minutes, totals are stored every 2 minutes.
- Data from the 1/16th intervals is not useful, too much scatter – we end up summing them.

RAD on Curiosity

 Curiosity is powered by a ²³⁸Pu RTG → a constant background of neutrons and γ-rays.

RAD is only ~ 1 meter from the RTG.

RAD on Curiosity

 Curiosity is powered by a ²³⁸Pu RTG → a constant background of neutrons and γ-rays.

RAD is only ~ 1 meter from the RTG.

SarcasticRover @SarcasticRover 🈏 Follow

Who's the genius who put the RADIATION DETECTOR on the ATOMIC ROBOT? All it does is BEEP constantly & I can't shut it off!

┝ Reply 1 Retweet 🔺 Favorite 🛛 🚥 More

Curiosity's RTG

- RTG mostly above deck lots of mass.
- Interactions \rightarrow particles in RAD.
 - That part of the flux is same for cruise & surface.

RTG Neutrons \rightarrow Particles in RAD

- Direct neutrons, but detection efficiency is low.
- Other ways RTG creates particles in RAD:
 - n+nucleus interactions produce prompt γ 's, delayed γ 's, β 's.
 - γ's with enough energy can pair produce.

Direct Neutrons from RTG

- Large majority of RTG neutrons have E < 4 MeV.
- E neutron detection efficiency falls off below
 ~ 5 MeV due to low gain.
- Rover body, etc., provide some shielding.

Thanks to E.S. for the Akkurt paper.

RTG Gamma Data from Cape

- Savannah River DoE (SRS) group measured RTG γ 's.
- Vast majority of flux has E < 1 MeV.
- Both B and E see γ's, but:
 - B is small, detection efficiency is very low.
 - E detector threshold ~ 3 MeV.

Dose Estimates from SRS Data

- Detector was 5.8 m from RTG, extrapolate to 1 m assuming 1/r² dependence.
- Integrating measured spectrum \rightarrow dose rate from γ 's at RAD position \approx 400 μ Gy/day.
- Convolve measured spectrum with attenuation lengths → upper limits:
 - B dose rate ~ 5.5 μGy/day.
 - E dose rate ~ 2.9 μGy/day (3 MeV threshold).
 - Both ~ negligible.

RAD Measurement of RTG Background

- RAD was turned on for 1 hour on the Cape after installation of RTG.
 - "Hour of Power."
- $85 \,\mu$ Gy/day in B, ~ o in E.
- Descent Vehicle including fuel tanks, etc., just above RAD.

Hour of Power - Charged Particles

- In both D vs. (A+B) & E vs. D, see cosmic-ray muons, not surprising since RAD was vertical during test.
- Rest of particles look like mips in A+B but only ~ few MeV ΔE in D (<< muon ΔE) + nothing in E detector.
 These can only be electrons.

RTG \rightarrow Particles in RAD, Revisited

Most of the RTG dose in B is due to electrons.
 Therefore it's not surprising we don't see anything in E – it's shielded by D & F.

Hour of Power E Dose Rate

- E thresholds were lowered after Hour of Power, but if background is dominantly e⁻, dose rate is still ~ 0.
 - Energy to penetrate minimum shielding around E (1.2 cm of plastic) is ~ 3 MeV + ΔE to get to threshold is ~ 3 MeV, so need > 6 MeV total.
 - Flux of e⁻ with E > 4 MeV was 0 in Hour of Power.

Onboard Histograms \rightarrow Dose

• Dosimetry histograms record ΔE sum.

- 2 B histograms, one for high-LET, one for low-LET.
 - Different throughput efficiency.

- Corrected results are summed, divided by (acquisition time * detector mass).
- Mass of B is 0.134 g, E is 34.8 g (~ 250×).
- For B, subtract RTG background to get Si dose.
 - Multiply by "Si to tissue" factor.

Dosimetry Results Depend on Onboard Calibration Parameters

- Known issues:
 - Pedestal is approximated by noise peak, not completely accurate.
 - At points where the onboard calculation of ΔE switches from one gain to another, transitions are not perfectly smooth.
 - No quenching correction
 → E dose underestimated.

RTG Background in Surface Configuration

- No way to directly measure the effect of removing the mass that was above RAD.
 Can't turn off RTG, can't turn off environment.
- Try to infer from data.

B-E Dose Rate Correlations in Surface Data

- With ~200 sols of data, find linear relation between B and E dose rates (pretty good χ²).
- B_dr = a0 + a1*E_dr
- Associate a0 with RTG dose rate in B, a1 with Sito-tissue conversion factor.
 - Can't use for cruise data not enough variation.
 - Works in surface data because of diurnal variation (daily rise and fall of atmospheric pressure).

Interpreting B vs. E Fit

a0 = 75.6 μGy/day

- Was 85 μGy/day in Hour of Power.
- a1 = 0.6853, 1/a1 = conversion factor = 1.46.
- We used 1.45 in the Science paper (± 15%).
 - Factor of 1.2 commonly used.
- Fit depends on B and E calibration.
 - Subject to change.

Dose Equivalent Calculation

- LET spectrum all uncertainties in play:
 - Use ΔE spectrum in B with onboard calibration.
 - Subtract RTG spectrum.

- Convert ΔE in Si to H_2O .
- Determine errors using full error propagation including cross terms.
 - Scale errors in calibration tend to cancel in calculation of <Q>.
 - RTG subtraction differences also tend to cancel in calculation of H.

RTG Effect on LET Spectrum

- LET spectrum below about 1 keV/µm affected by RTG.
- <Q> varies with RTG scale factor, but not much:
- 0.6 → <Q> = 2.82
- 0.8 → <Q> = 3.05
- 1.0 → <Q> = 3.31
- Dose also varies but in opposite direction, i.e., smaller RTG scale factor → higher dose.

Conclusions

- This work is just starting all sources of systematic error need more study.
- B calibration: Assumed ± 7%, this included consideration of the gain switching.

Room for improvement.

- E calibration error was taken to be ± 20% largely due to concerns about (lack of) quenching correction.
- B vs. E dose rate on surface gives us a bit more confidence in the Si-to-tissue factor.
 - Dominant uncertainty when using B.

Backup Material

Readout Electronics

Sensor head has low-noise preamps & shaping amps.

- A1, A2, B, and C preamp outputs are split into two shapers (
 8 signals out of sensor head).
- D and E each have 3 diodes for readout, each produces 1 signal (-> 6 signals).
- F1, F2, and C2 have 1 output apiece \rightarrow 3
- □ 17 total.

- On "analog board," each shaped signal from sensor head is input to 2 separate channels of the VIRENA ASIC → 34 of 36 channels used.
- VIRENA has additional amplification available, typically in a redundant pair of channels, one gets x8, the other x1.

Segmentation of A, B, C

- Inner A segments = A2.
- Outer A = A1.
- "C2" anticoincidence channel includes segments on B and C.
- Outer C segments collect light from F1 scintillator.
- Each detector has 4 readouts with differing gains: U, H, M, L.

Triggers

- RAD allows up to 16 coincidence conditions to be defined as individual triggers. Examples:
 - A1U*BU fires on low-LET charged particles in the telescope, outer A segment.
 - A2M*BM fires on high-LET charged particles in the telescope, inner A segment.
 - BU alone = "B dosimetry," fires on any hit above threshold in B.
 - EH*EI = "E dosimetry," fires on any hit above threshold in two E diodes with high gain.
 - EH*EI*!F1*!F2*!C2*!CU*!BU = E neutral, like E dosimetry but also require nothing in anticoincidence.