Response of a PADC Neutron Personal Dosemeter to HZE: ICCHIBAN-4 Results

Luke Hager, David Bartlett and Rick Tanner

National Radiological Protection Board

Personal neutron dosemeters of simple design, processed using simple techniques developed for personal dosimetry, may be used to estimate this neutron component. Electrochemically etched pits in poly allyl diglycol carbonate (PADC or CR-39®) etched track detectors are identified and counted using fully automated read-out procedures.

The tracks observed will be produced not only by secondary charged particles from interactions of the neutron component of the radiation field, but also in part by the proton and energetic heavy charged particle components of the radiation field at the location of the dosemeter, leading to an over-estimate of the neutron component. The efficiency of the etch and read procedures is very dependent on particle type, energy and angle of incidence.

For the etch regime employed, the combination of high LET threshold (there is little response below a restricted LET_{200} in PADC of about 30 keV μ m⁻¹), and poor angle dependence of response to high-energy charged particles (HZE), results in a much reduced overall response of the neutron dosimeter to the HZE component of the field in spacecraft and no response to protons of energy greater than about 1 MeV at the surface to be etched.

Preliminary measurements indicate that for examples of the HZE component of the radiation fields in spacecraft, a correction of 5 to 10% is necessary to account for the detector HZE response.

Alternatively, an additional chemical etch can be carried out which allows discrimination.

PADC neutron personal dosemeter responds to neutrons plus neutron-like interactions of highenergy protons

- Only responds directly to protons of E_p < about 1 MeV
- Some response to heavier charged particles LET_{200} > about 30 keV μm^{-1} , depending on particle type
- Can generally distinguish HZE electrochemically etched tracks by second chemical etch

Figure showing results for ICCHIBAN-2

Charged particle angle dependence of relative response: ICCHIBAN-2 data

	0°	15°	30°	60°	75°	Forward 2π (ISO free air)	ISO on body
⁵⁶ Fe 464 MeV/n	0.90	0.85	0.70	0.30	0	30% to 40%	15% to 20%
²⁸ Si 469 MeV/n	0.50	0.55	0.02	0	0	about 5%	about 2%

Results of ICCHIBAN-4 Irradiations

Measurements at HIMAC/ICCHIBAN-4 with the NRPB PADC Dosemeter

Electrochemical etch - back face 11.5 hours 20% NaOH at 40°C followed contiguously by 8 hours 20% NaOH at 40°C at 23.5 kVcm⁻¹

Chemical etch - both faces 18 hours 20% NaOH at 80°C –only ECE results available at present time

Electrochemical etching- single detector charged particle results: ¹²C 400 MeV/n

Particle/ Energy	Shielding condition	LET keV µm ⁻¹	Dose mGy	Fluence cm ⁻²	Corrected Net Tracks ^(a) cm ⁻²		Note
					Det.1	Det.2	
¹² C 400 MeV/n	zero	10.963	1	57000	8	1	(b)
	5 g cm ⁻² Al	?		?	9	11	(c)
	10 g cm ⁻² Al	?		?	21	14	(d)
	5 g cm ⁻² PMMA	?		?	19	15	(e)

- (a) Observed number of tracks cm ⁻² after subtraction of background and corrected for non-linearity at high track density
- (b) Not significantly different from background. Primary beam particles below LET threshold
- (c), (d), (e) Primary beam particles below LET threshold. A few higher LET fragments? some larger tracks

In subsequent figures, detector 1 is edged in orange, detector 2 in red.

C pack 1	1mGy		
Condition	mono		
ID	Dtr	Tracks	Net Corr Tracks
24	D109235	41	15
41	D109205	28	2

Electrochemical etching- single detector

charged particle results: ²⁰Ne 400 MeV/n

Particle/ Energy	Shielding condition	LET keV µm ⁻¹	Dose mGy	Fluence cm ⁻²	Corrected Net Tracks ^(a) cm ⁻²		Note
					Det.1	Det.2	
²⁰ Ne 400 MeV/n	zero	30.959		20200	690	23	(f)
	5 g cm ⁻² Al	?	1	?	225	1180	(g)
	10 g cm ⁻² Al	?		?	8390	5520	(h)
	5 g cm ⁻² PMMA	?		?	5000	7020	(i)

(f), (g) At LET threshold – some non-uniformity of response across/between detectors because of small

differences in applied field strength during processing

(h), (i) Just on LET threshold – some non-uniformity of response

In subsequent figures, detector 1 is edged in orange, detector 2 in red

482 microns

520 microns

513 microns

502 microns

506 microns 516 microns

ion	10g Al		
ID	Dtr	Tracks	Net Corr Tracks
13	D109225	6704	14818
54	D109203	5250	9750

Electrochemical etching- single detector charged

particle results: ⁵⁶Fe 500 MeV/n

Particle/ Energy	Shielding condition	LET keV µm ⁻¹	Dose mGy	Fluence cm ⁻²	Corrected Net Tracks ^(a) cm ⁻²		Note
					Det.1	Det.2	
⁵⁶ Fe 500 MeV/n	zero	~ 190		~3300	3980	3790	(j)
	5 g cm ⁻² Al	?		?	3420	3440	(k)
	10 g cm ⁻² Al	?	1	?	380	360	(I)
	5 g cm ⁻² PMMA	?		?	3640	3570	(m)

(j), (k) Above threshold, 100% detection efficiency

(I) Beyond Bragg peak- some fragments plus a few secondary neutrons?

(m) Above threshold, 100% detection efficiency

In subsequent figures, detector 1 is edged in orange, detector 2 in red

Electrochemical etching- single detector

charged particle results: 'blind' irradiations

Particle/ Energy	Shielding condition	LET keV µm ⁻¹	Dose mGy	Fluence cm ⁻²	Corrected Net Tracks ^(a) cm ⁻²		Note
					Det.1	Det.2	
'Blind' 4	?	?	?	?	1040	990	
'Blind' 6	?	?	?	?	1040	1080	
'Blind' 7	?	?	?	?	3460	3580	

In subsequent figures, detector 1 is edged in orange, detector 2 in red

Electrochemical etching- single detector charged particle full results

Particle/ Energy	Shielding condition	LET keV µm ⁻¹	Dose mGy	Fluence cm ⁻²	Corrected Net Tracks ^(a) cm ⁻²	
¹² C	zero	10.963		57000	8	1
	5 g cm ⁻² Al	?	1	?	9	11
400 MeV/n	10 g cm ⁻² Al	?	1	?	21	14
	5 g cm ⁻² PMMA	?		?	19	15
	zero	30.959		20200	690	23
²⁰ Ne	5 g cm ⁻² Al	?	1	?	225	1180
400 MeV/n	10 g cm ⁻² Al	?	1	?	8390	5520
	5 g cm ⁻² PMMA	?		?	5000	7020
	zero	~ 190	1	~3300	3980	3790
⁵⁶ Fe	5 g cm ⁻² Al	?		?	3420	3440
500 MeV/n	10 g cm ⁻² Al	?	1	?	380	360
	5 g cm ⁻² PMMA	?		?	3640	3570
'Blind' 4		?	?	?	1040	990
'Blind' 6		?	?	?	1040	1080
'Blind' 7		?	?	?	3460	3580

ACKNOWLEDGEMENTS

The authors should like to thank Yukio Uchihori, N Yasuda, Eric Benton and their colleagues at NIRS.