Bubble Detector Characterization for Space Radiation

B.J. Lewis, A.R. Green, H.R. Andrews*, L.G.I. Bennett, E.T.H. Clifford*, H. Ing*, G. Jonkmans*, R. Noulty* and E.A. Ough

Royal Military College *Bubble Technology Industries

8th Workshop on Radiation Monitoring for the ISS Berkeley, California September 3-5, 2003

- Introduction
 - Space Dosimetry
- Ground-Based Accelerator Study

EV-CPDS: *Extra-Vehicular Charged Particle Spectrometer*

IV-CPDS: Intra-Vehicular Charged Particle Spectrometer

TEPC: *Tissue* Equivalent Proportional Counter

RAM: *Radiation Area Monitors* (TLDs)

PRD: Passive Radiation Dosimeter (TLDs)

CPD: Crew Passive Dosimeter (TLDs, PNTD)

Active instrument real-time telemetry

Active instrument no real-time telemetry

Passive instrument

* Adapted from: M. Golightly, "Initial Briefing to Astronauts Radiation Exposure During Space Missions, 1998 Astronaut Candidate Class," NASA-JSC, June 10, 1999.

Space Dosimetry and Exposures*

Туре

Program

Measurements

Crew Personnel Dosimetry:		
TLD-100	All Programs	Absorbed dose
TLD-300, 600, 700	STS, and ISS	Absorbed dose
CR-39 or other Nuclear plastic	Apollo, Skylab, STS, STS,	
track detectors	Mir	Fluence vs. LET or Z
Fission Foils	Apollo, STS	
Area dosimetry:		
	STS Mir ISS	Absorbed dose
		Absorbed does
TLD-300, 600, 700	515,155	Absorbed dose
CR-39 or other Nuclear plastic		
track detectors		Fluence vs. LET or Z
Fission Foils	Apollo, STS	
Active Ionization Chambers	Apollo, Skylab	Absorbed dose
TEPC	STS, Mir, ISS	Lineal energy, dose, dose equivalent
Z,E Telescope	Mir, STS, ISS	Fluence vs. Z and E
Bonner Spheres	STS, ISS	
Bubble detectors	STS	Neutrons?

150 – 200 μGy/d (currently @ solar max) (~2 x greater during solar min)

~ 60 mSv for 140 days (CNSC terrestrial limits are 20 mSv/y)

*Adapted from: F. Cucinotta, "Organ Dose Estimates for Astronauts," CSA Training with SRAG, NASA-JSC, January 27-31, 2003.

Experimental

- Equipment Tested
 - Extended Range ("Space Pack") Bubble Detector Spectrometer (BDS)
 - Normal BDS + high threshold detectors (20 and 100 MeV), Bi Loaded: ²⁰⁹Bi(n,f)
 - Temperature-Compensated Bubble Detectors (BD-PND)
 - Nuclear Fragmentation Separation Experiment (NFSE)
- Ground-Based Accelerator Measurements
 - CERF (Integral neutron field simulant space spectrum)
 - HIMAC (180 MeV/u N & 500 MeV/u Ar ions)
 - TRIUMF (81.7 MeV p)

Neutron-Sensitive Bubble Detector

$$\frac{M}{H} = R_H = \frac{\int R_{\phi} \phi_E dE}{\int h_{\phi} \phi_E dE}$$

Response-to-Fluence Functions R_{ϕ} for BD-PND and BDS

Neutron Spectra ϕ

- Airline and Accelerator Shielding: Multisphere spectrometer
- MIR: nuclear photoemulsion, fission foils, recoil protons in organic scintillator and reaction products from CsI(Tl) scintillation crystal

Ground-Based Calibration at CERF

Nuclear Fragmentation Separation Experiment (NFSE)

- Charged particle signature accompanies ~ 10% of events registered in BD
 - Agreement with FLUKA: charged hadron (p, π) fluence rate one order of magnitude less than neutrons
- BD-PND (260±50 pSv/PIC) vs CERF reference value (265±5 pSv/PIC)
 - Supports BD-PND calibration factor R_H
- NFSE needs space qualification

CERF Neutron Spectrum

Comparison of BDS with Multisphere Spectrometer

MIR Neutron Exposure (Nov 92-Jan 93)

• BDS: 150 µSv/d (with CERF calibration factor)

- TLD Measurements (Badhwar)
 - 260 μ Gy/d x 2.5 (average TEPC quality factor) x 20% (neutron fraction of charged particle dose equivalent) = 130 μ Sv/d

BD Testing at HIMAC (Ar and N ions)

Pressure Control

Temp. Control

BD Testing at HIMAC (Ion Beams)

BD LET Vs Super Heat Response

Argon Beam

Nitrogen Beam

Comparison Among Nuclei

 \Rightarrow Effect of track structure?

Temperature Compensated BD-PND (S = 0.3)

• BD-PND exposed to Ar beam

BD-PND show constant response over broad range of temperature
Response of BD-PND

-LET_{Ar} = 201 ± 40 keV/μm
-LET_N = 116 ± 40 keV/μm

BD Testing at TRIUMF (Protons)

Bubble Detectors

BD Response to Protons

81.7 MeV protons
90 keV/micron
Straggling 2 mm

Comparison Among Nuclei

Proton

Nitrogen

Argon

Conclusion

- Better understanding of BD response to charged particles
 - Modulate response of BD to desired LET
 - Super heat alone insufficient to describe LET response (d'Errico curve)
 - BD-PND response constant over wide temperature range
- NFSE successfully tested for charged particle discrimination
- BDS can be used for (high-energy) neutron spectral measurements
 - Further testing required with Bi-loaded detectors

Acknowledgments

- M. Neiman and A. Mortimer (CSA), M. Silari and E. Dimovasili (CERF), M. Takada and H. Kitamura (HIMAC), E. Blackmore (TRIUMF)
- Funded by Space Life Sciences program of CSA