

Space Dosimetry with Tritel 3D Silicon Detector Telescope

A. Hirn¹, T. Pázmándi¹, S. Deme¹, I. Apáthy¹, A. Csöke¹, L. Bodnár²

¹KFKI Atomic Energy Research Institute, Budapest, Hungary ² BL-Electronics, Solymár, Hungary

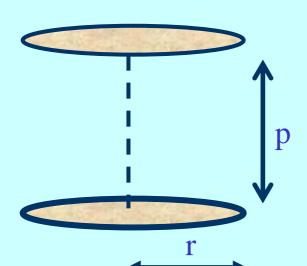
hirn@sunserv.kfki.hu

Outline

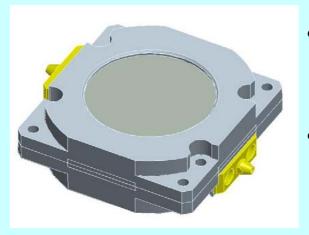
- Main objectives of the development
- Instrumentation (Tritel)
- Results
 - Mechanical construction
 - Measurements, vibration tests
- Conclusion and the future

Tritel

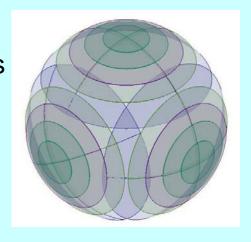
3D silicon detector telescope for space dosimetry


- Main goals:
 - determination of the absorbed dose
 - determination of the radiation weighting factor
 - evaluation of the equivalent dose
 - Assessment of angular asymmetry

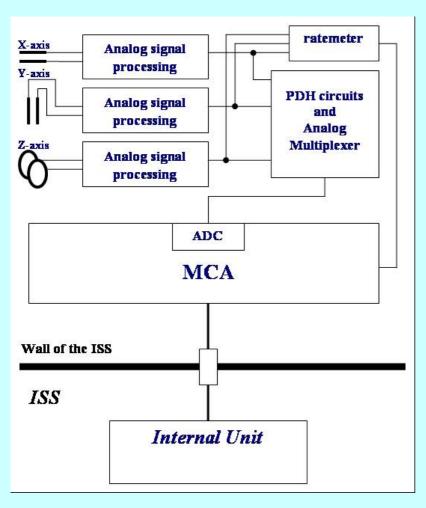
+


efficiency corrections of the TL measurements

Geometry

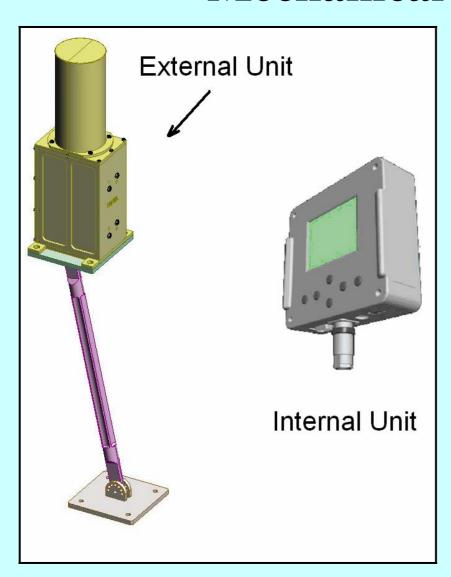


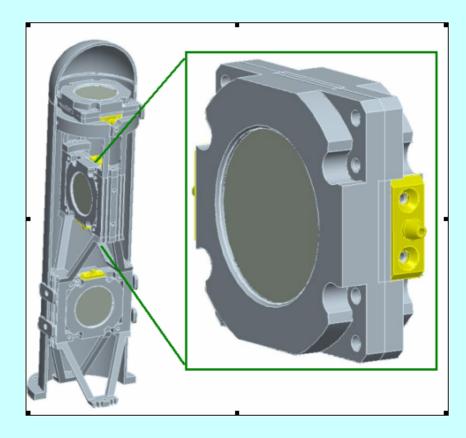
- Thickness of the silicon crystal: ~300 μm
- $p \cdot r = 12 \text{ mm } (450 \text{ mm}^2)$
 - $q = p/r = 1.23 \rightarrow p = 14.8 \text{ mm}$



- Detector chips of the telescope are connected as AND gate in coincidence
- 3D sensitivity

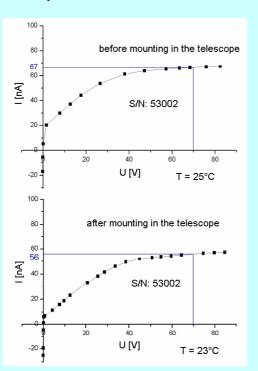
Instrumentation





- Ungated spectra
 - → absorbed dose (D)
- Gated (coincidence) spectra
 - → LET spectrum and equivalent dose (H)
- D and H
 - → average radiation weighting factor
- Ratemeter + time analyser
 - → SAA crossing

Mechanical construction



Measurements

Vibration tests (control: reverse current measurements)

→ telescope designed in our Institute complies with the vibration requirements

Detector	Specification (datasheets)			_	Measured	Calculated
(S/N: 53002) mounting	U [V]	Umax [V]	I _{reverse} (20°C) [nA]	T [°C]	Ireverse [nA]	Ireverse [nA]
original: telescope:	70	90	36	(25 ± 1) (23 ± 1)	67 ± 1 56 ± 1	72 ± 10 55 ± 8

Possible flight opportunities – the future

- ISS Tritel
- SSETI Tritel (Tritel-S)
- ESA Tritel (SURE) (?)

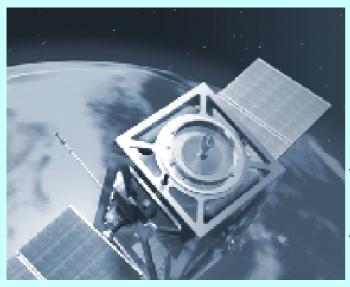
ISS Tritel



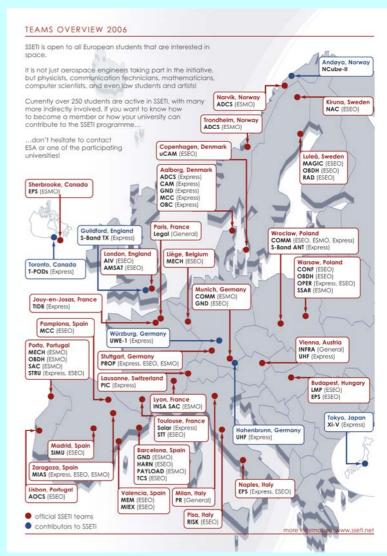
A Tritel installed outside ISS in cooperation with the Institute of Biomedical Problems (IBMP, Moscow).

(later aboard a Mars probe?)

- Internal and external units
- Separate SAA spectra
- On board data processing
- 200 kB/d = 72 MB/yr:
 - On memory stick (change every 6 months)
 - Data transfer via ISS (data reduction needed: $\sim 4kB/d$)



ESA SSETI Program


SSETI (Student Space Exploration and Technology Initiative): designing and

building of subsystems of student micro-satellites

- SSETI Express, Oct. 2005.
- SSETI ESEO(2008.)
- SSETI ESMO

11th WRMISS September 6 - 8, 2006, Oxford, UK

Tritel-S

- GTO: 250 km 35950 km, $i = 7^{\circ}$, t = 10.6 h
- multiple crossings of the Van Allen belts
- may be a precursor of a Tritel aboard a Mars probe
- recruitment: students from the technical university will be involved in the development

LMP team

- Langmuir-probe (plasma measurements)
- Tritel 3D silicon detector telescope (space dosimetry)

ESA Tritel (SURE)

• SURE = International Space Station: a Unique REsearch Infrastructure

- Proposal evaluation and selection: September 2006 (?)
- 4-year ESA project for the 10 new EU members + Romania and Bulgaria funded by the European Commission under FP6
- Onboard the European Columbus module

Tritel + intercomparison with the results of three solid state nuclear track detector (SSNTD) + TL stacks

Summary

- testing of the detectors for space requirements
- development of the prototype of the telescope (mechanics)
- the construction of the first model of the analogue signal processing chain has been finished
- the final optimization of the parameters of the system is under way

Information for the

- absorbed dose
- LET spectrum
- radiation weighting factor
- equivalent dose
- effective dose (if completed with phantom measurements)

Thank you for your attention!