MATROSHKA-R experiments: Results obtained with passive detectors in 2005-2009

I. Ambrožová<sup>1</sup>, Z. Mrázová<sup>1,2</sup>, K. Brabcová<sup>1</sup>, J. Kubančák<sup>1,2</sup>, F. Spurný<sup>1</sup>, V.A. Shurshakov<sup>3</sup>, I.S. Kartsev<sup>3</sup>, R.V. Tolochek<sup>3</sup>

 <sup>1</sup> Nuclear Physics Institute, ASCR, Prague, Czech Republic
 <sup>2</sup> Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, Czech Republic
 <sup>3</sup> Institute for Biomedical Problems, Moscow, Russia

# Introduction

- MATROSHKA-R experiments (various compartments of the ISS, inside and on the surface of the spherical phantom)
- □ several exposures during 2005–2009
- passive detectors (thermoluminescence and plastic nuclear track detectors)
- LET spectra, absorbed dose, dose equivalent, and quality factor

# **Passive detectors**

### D TLD

- Al<sub>2</sub>O<sub>3</sub>:C, CaSO<sub>4</sub>:Dy, Al-P



# Passive detectors PNTD

 HARZLAS TD-1, Page, USF-4, Tastrak, Baryotrak



# Spherical phantom MTR-R

- □ 35 cm diameter
- □ mass 32 kg
- □ 32 pockets
- 4 thick and 16 thin containers



## **SPD** boxes

| SPD box # | Panel #, position        |  |
|-----------|--------------------------|--|
| 1         | 102; Piers-1, floor      |  |
| 2         | 401; Piers-1, star board |  |
| 3         | 325; SM, cone, ceiling   |  |
| 4         | 462; SM, star board      |  |
| 5         | 323; SM, cone, ceiling   |  |
| б         | 305; SM, ceiling         |  |



## **Exposures**

| Experimental run | Duration [days]             | ISS altitude [km] | Location    |
|------------------|-----------------------------|-------------------|-------------|
| phantom 2006     | 273 (Dec. 2005 – Sep. 2006) | 351 (344–361)     | SM          |
| SPD 2007         | 163 (May - Oct. 2007)       | 346 (338–353)     | SM, Piers-1 |
| phantom 2008     | 206 (May – Dec. 2008)       | 356 (345–366)     | Piers-1     |
| SPD 2008         | 163 (May – Oct. 2008)       | 355 (345–365)     | SM, Piers-1 |
| phantom 2009     | 158 (May - Oct. 2009)       | 356 (350–361)     | Piers-1     |
| SPD 2009         | 158 (May – Oct. 2009)       | 356 (350–361)     | SM, Piers-1 |

T

# Results

### MTR-R spherical phantom

- LET spectra
- D, H on the surface of the phantom
- D inside the phantom
- □ SPD boxes
  - LET spectra
  - D, H

### MTR-R - spectra LET



### **MTR-R - pockets**



□ 2006: Al-P + Page; 2008: Al-P + TD-1; 2009: Al-P + USF-4

### **MTR-R - containers**

MTR-R - absorbed dose inside the phantom



□ CaSO<sub>4</sub>:Dy

### MTR-R - absorbed dose measured with TLD

□ inside: CaSO<sub>4</sub>:Dy, pockets: Al-P

| Experimental run | D inside [µGy/day] | D pockets [µGy/day]         |  |
|------------------|--------------------|-----------------------------|--|
| MTR-R 2006       | 129 ± 10           | $202 \pm 35$<br>(145 - 254) |  |
| MTR-R 2008       | 163 ± 6            | $245 \pm 37$<br>(173-314)   |  |
| MTR-R 2009       | 222 ± 11           | $312 \pm 46$<br>(246 - 396) |  |

### **SPD** - spectra LET



### **SPD** - spectra LET



# SPD - total absorbed dose and dose equivalent



□ 2007: Al-P + Page; 2008: CaSO<sub>4</sub>:Dy + TD-1; 2009: Al-P + TD-1

# Summary

| Experimental run     | $D_{low-LET} \left[\mu Gy/day ight]$ | $D_{total} \left[ \mu Gy/day  ight]$ | $H_{total} \left[\mu Gy/day ight]$ | Q                            |
|----------------------|--------------------------------------|--------------------------------------|------------------------------------|------------------------------|
| 2006 SM (MTR-R)      | 146 ± 26<br>(98 – 180)               | $209 \pm 35$<br>(157 - 265)          | $381 \pm 60$<br>(323 - 490)        | $2.0 \pm 0.2$<br>(1.8 - 2.4) |
| 2007 Piers-1         | $225 \pm 43$                         | $260 \pm 53$                         | $577 \pm 151$                      | $2.2 \pm 0.1$                |
| 2007 SM              | $168 \pm 21$                         | $203 \pm 21$                         | $498 \pm 71$                       | $2.5 \pm 0.5$                |
| 2008 Piers-1 (MTR-R) | $187 \pm 29$<br>(128 - 233)          | $250 \pm 38$<br>(177 - 322)          | $731 \pm 142$<br>(496 - 991)       | $2.9 \pm 0.4$<br>(2.2 - 3.4) |
| 2009 Piers-1         | $392 \pm 24$                         | $438 \pm 19$                         | $883 \pm 40$                       | $2.0 \pm 0.2$                |
| 2009 Piers-1 (MTR-R) | $271 \pm 39$<br>(214 - 350)          | $312 \pm 46$<br>(246 - 396)          | $783 \pm 127$<br>(593 - 987)       | $2.5 \pm 0.2$<br>(2.2 - 2.9) |
| 2009 SM              | $314 \pm 35$                         | $351 \pm 41$                         | $748 \pm 114$                      | 2.1 ± 0.2                    |

1

П

I

# Conclusion

### various positions on the phantom

- D inside the phantom about 30% lower than on the surface
- on the surface difference up to factor 2
- various positions inside the ISS
  - in Piers-1 Module D is about 30% and H about 20% higher than in SM; in Columbus Module D and H are about 40% lower than in SM
  - thickness of the wall, shielding distribution and surrounding materials (usually unknown)

# Dependence on the thickness



calculation using PHITS

D Mrazova et. al., presented at 38th COSPAR, Bremen, Germany, July 2010.

## Conclusion

### experimental phase

- from 2005 to 2009 increase of dose characteristics (from 2007 to 2009 D increased by about 70%; from 2008 to 2009 by about 40%)
- decreasing phase of the solar cycle
- different altitude of ISS (in 2008 and 2009 about 10 km higher than in 2007)

### **Dependence on the ISS altitude**



calculation using PHITS 

Mrazova et. al., presented at 38th COSPAR, Bremen, Germany, July 2010. 

# Acknowledgment

This work was supported through GACR 205/09/0171, GAAV KJB100480901, and bilateral scientific cooperation of the Academy of Sciences of the Czech Republic and the Russian Academy of Sciences. Authors are much obliged to the organizers of ICCHIBAN experiments and staff of HIMAC (NIRS, Japan), NSRL (BNL, USA), and Nuclotron (Dubna, Russia) for their help and assistance.