A Sort-of Tissue Equivalent Proportional Counter (STEPC) for Space Radiation Dosimetry Applications

Eric Benton, Tyler Collums, and Art Lucas E. V. Benton Radiation Physics Laboratory Oklahoma State University

Stillwater, Oklahoma, USA

Research Objectives

- Evolutionary approach to TE ionization chamber and proportional counter design, fabrication, and testing;
- Common 2" \u03c6 spherical chamber design;
- Alternative TE plastics;
- Alternative anode wire, field tube, and grid wire configurations;
- Alternatives in fill gas composition and pressure;
- Alternative detector/spectrometer electronics;
- Testing of instruments on near-space Balloon flights.

Design of Prototype STEPC

STEPC Prototype Features

Similar in design to FarWest LET-SW2 2" single wire counter, but includes:

- built in preamplifier (Cremat CR-110).
- double O-ring resealable container,
- removable ²⁴¹Am check source.

Currently five versions of STEPC:

- A-150 Tissue Equivalent Plastic,
- Nylon,
- Acrylic,
- Polyethylene,
- Polystyrene.

STEPC Prototype Circuitry

STEPC Prototype

Detector in a can

STEPC's guts

Stabilization of gas gain as a function of time since STEPC gas fill

Uncalibrated Lineal Energy spectrum from 5.49/5.44 MeV ²⁴¹Am α -particles measured in A-150 STEPC operating at 1400 V and 173 Torr.

Initial testing at HIMAC with 150 MeV/amu ⁴He and 500 MeV/amu ⁵⁶Fe beams

- BIO Room using 10 cm diameter beam
- scintillator to monitor beam flux

Uncalibrated lineal energy (y) spectra measured by the Nylon STEPC during exposures to bare and range modulated ⁴He beams at HIMAC.

Uncalibrated lineal energy (y) spectra measured by the Nylon STEPC during exposures to the ⁴He beams at orientations perpendicular to and parallel to the axis of container

Uncalibrated lineal energy (y) spectra measured by the five STEPC detectors during exposures to the ⁴He beam behind 12 cm of absorber.

Uncalibrated lineal energy (y) spectra measured by the polystyrene STEPC in the HIMAC ⁵⁶Fe beam behind 0.0, 3.0, and 5.0 cm water equivalent absorber.

STEPC Characterization at the ProCure Proton Treatment Center in Oklahoma City, USA

OSU EVB RPL

Dose Distributions as a function of Lineal Energy for 87 MeV Protons at ProCure using multiple STEPCs

Lineal Energy, y (keV/ μ m)

Dose Distributions as a function of Lineal Energy for Protons at ProCure with the A-150 STEPC

Portable, Autonomous STEPC for high altitude balloon testing

- Integrated into STEPC Container
 - Ionization Cavity $\sqrt{}$
 - Preamplifier: Cremat CR-110 $\sqrt{}$
 - Amplifier: Cremat CR-200 or Amptek
 - Spectrometer/ADC: Bridgeport Instruments Emorpho, XIA µDXP, Amptek DP4
 - High voltage power supply: EMCO or similar DC/DC converter
- External to STEPC Container
 - Microcontroller/Datalogger
 - Battery-based power supply

Conclusions

- Prototype STEPCs have been designed, fabricated and our now being characterized and calibrated.
- Currently comparing STEPCs with ionization cavities made of different materials to assess effect of composition on detector response.
- Currently designing amplifier, spectrometer, and HVPS that will fit in container with existing ionization cavity and preamp.
- Portable, autonmous STEPC, including power supply and data logging computer will be tested on a high altitude balloon mission in early 2011 (we hope).

