

FP7 GA 218817

HAMLET: Ground Based Verification of the MATROSHKA Facility: Results from the experiments at HIMAC and GSI

Pawel Bilski for the HAMLET consortium

IFJ, Krakow, Poland

Goals:

- To characterize and to intercompare various detectors' systems with the high-energy ion beams
- To produce datasets (dose distributions within a phantom head), as tools for benchmarking radiation transport codes

Heavy Ion Medical Accelerator, HIMAC, Chiba, Japan

HIMAC research project 20P-240

- ≻ May 2008
- February 2009
- February 2010
- ➤ June 2010

Future: ➤ February 2011

HAMLET Ground Based Research

Ion	Energy (MeV/n)	Day	
Carbon	400	8 May 2008	
Helium	150	9 May 2008	
Iron	500	10 May 2008	

Ion	Energy (MeV/n)	Day	
Helium	150	13 February 2009	
Iron	500	0 18 February 2009	

Ion	Energy (MeV/n)	Day
Silicon	490	10 February 2010
Carbon	400	11 February 2010

Ion	Energy (MeV/n)	Day
Iron	500	10 June 2010

CAU

Types of exposures:

- without phantom (efficiency studies)
- phantom head with detectors

Phantom head exposures:

a) monodirectional

TTT

b) 'omnidirectional'

head rotation 45° or 60° or 30°

HIMAC – efficiency comparison

He 2.23 keV/µm, May 2008

both beams has the same range in water

uncorrected data

HTR-based efficiency correction

HIMAC Simulations

15th WRMISS Frascati, 07 – 09 September, 2010 14

GEANT4 simulation

HIMAC Simulations

15th WRMISS Frascati, 07 – 09 September, 2010 15

He omnidirectional (45°)

GEANT4 simulation

HIMAC Simulations

HIMAC - Simulations

lealth rotectio

Beamprofile

Acknowledgments to HIMAC, NIRS for providing the beamprofiles

AU

HIMAC – Simulations

using the real beamprofile

Track Detectors

Multidirectional and multi-ion exposure: He, C, Fe

LET , keV/ μ m

Low LET particles (<100 keV/ μ m) are slowed down carbon ions while the higher ones (> 300 keV/ μ m) were induced by He ions via target fragmentation procedure. The distinct peaks can be related to the Fe ions.

AERI Budapest data

HIMAC May 2008

Multidirectional and multi-ion exposure: He, C, Fe

Position	D mGy	H mSv	Q
5 f	$\textbf{5.77} \pm \textbf{0.41}$	95.7 ± 4.9	16.6 ± 0.5
7 f	3.36 ± 0.17	67.2 ± 1.9	20.0 ± 0.6
9f	$\textbf{4.99} \pm \textbf{0.44}$	79.5 ± 4.5	16.0 ± 0.7
11f	3.12 ± 0.18	67.0 ± 2.0	21.5 ± 0.7

Dose values obtained by PADC stacks at different positions inside the head phantom as shown in the figure.

 $LET > 15 \ keV/\mu m$

The higher Q at position 7f and 11f is due to the dominant effect of Fe ions.

AERI Budapest data

Track Detectors

15th WRMISS Frascati, 07 – 09 September, 2010 21

HIMAC Feb 2009

IFJ Krakow data

Average $\mathsf{LET}_{\mathsf{H2O}}$ distribution

keV/μm

IFJ Krakow data

Angular characteristics

Response relative to normal incidence

HPA data

SSD detectors

- Fe ions 490 MeV/nuc hitting the back of MTR phantom head
- Detector 2 and 4 were perpendicular to beam (direct hits in the silicon diodes + light from BC-430)
- Detector 1 and 3 were parallel to beam (only light from BC-430)
- All detectors show iron fragments

Gesellschaft für Schwerionenforschung, GSI, Darmstadt, Germany

ESA-IBER research project AO-08-IBER-12

> August 2009, Iron 1 GeV/u

> April 2010, Nickel 1 GeV/u

Problems:

- large deviations of results between detectors
- Iarge deviations of results between irradiations
- efficiency results much too high comparing to previous experiments

April 2010 Ni 1GeV/nuc 10x10 cm field

Result of the spotscanning technique?

SUMMARY

- 6 irradiation campaigns at HIMAC and GSI (one more to come)
- 5 ion species used (He, C, Si, Fe, Ni)
- About 20 phantom head experiments
- About 40 calibration/intercomparison exposures

still a lot of data to be analyzed

15th WRMISS Frascati, 07 – 09 September, 2010 29

Thank you very much for your attention

