15th WRMISS
 Villa Mondragone
 7th- 9th September 2010

ISS radiation environment anisotropies measured by ALTEA

L. Di Fino^{1,2}, M. Casolino², C. De Santis², M. Larosa^{1,2}, C. La Tessa³, L. Narici^{1,2}, P. Picozza^{1,2}, V. Zaconte^{1,2} ¹University of Rome Tor Vergata ²INFN sez. Tor Vergata ³GSI Helmholtz Centre for Heavy Ion Research

Summary

- Rationale
- ALTEA detector
- ALTEA in the ISS
- Use ALTEA as a single detector
- Results: angular distributions
- Results: spectra
- Simulation
- High-LET anisotropy
- Integrated fluxes and LET rates
- Conclusions

Rationale

- Exposure of crew to space radiation poses one of the most significant hazards to space permanence.
- Since the response of dosimeters and radiation detectors depends on their orientation respect to the impinging radiation flux, angular anisotropies of this flux cannot be ignored.
- ALTEA is an optimal device to study composition and angular anisotropies of the cosmic ray flux thanks to wide LET acceptance window (3-800 KeV/ μ m), large geometrical factor and full coverage of the solid angle.

ALTEA detector

ISS018E046042

Observation period: ~ 74 effective days 01/06/2009 – 28/09/2009

	Time (s)	Triggers (part.)
Mean	6.40 * 10 ⁶	4.95 * 10 ⁷
Poles	1.89 * 10 ⁶	1.69 * 10 ⁷
Equator	3.80 * 10 ⁶	1.87 * 10 ⁷
SAA	7.03 * 10 ⁵	1.39 * 10 ⁷

- ALTEA particle detector is composed by 6 SDUs (Silicon Detector Unit).
- Each SDU is composed by 6 silicon planes segmented alternatively along orthogonal directions.
- Each plane is $8x16 \text{ cm}^2$ and $380 \mu \text{m}$ thick
- Each SDU has a geometrical factor of 230 cm²sr
- LET range is from 3 to 800 KeV/ μ m

	Minimum kinetic energy (MeV/n)	Maximum kinetic energy (MeV/n)
Н	25	35
⁴ He	25	250
⁵⁶ Fe	190	> 2 GeV

GeoZones

Zone	В	L
Poles	Any	<u>></u> 2
Equator	<u>></u> 2.5*10⁻⁵ T	< 2
SAA	< 2.5*10⁻⁵ T	< 2

Use ALTEA as a single detector (1)

In a spherical coordinate system we defined 16x16 (θ - ϕ) histograms with a square bin of $\pi/16 \times \pi/16$ size.

Particle flux anisotropy in raw angular flux distribution is masked by SDU angular acceptance.

We need to calculate the geometrical factor for each $(\theta-\phi)$ bin in order to normalize histograms to absolute fluxes. We must take into account the overlap between different SDUs.

Orthogonal projection of SAA angular distributions

Note: <u>ALTEA is not able to discriminate between forward and backward moving particles</u>, so solid angle is limited to $\theta = [0, \pi]$; $\varphi = [-\pi/2, \pi/2]$

Use ALTEA as a single detector (2)

A Montecarlo simulation of an isotropic flux was used to obtain each SDU angular acceptance. To use ALTEA as a single detector we sum all the SDUs to obtain the angular acceptance of the whole ALTEA detector - $R(\theta, \phi)$.

The maximum value of almost 2 means that each particle in each direction is counted twice (by two different SDUs); efficiency is never less than 10% meaning that ALTEA is able to detect particle coming from any direction. We use $R(\theta,\phi)$ to calculate angular geometrical factor

 $\mathsf{GF}(\theta, \phi)$ is used to normalize raw flux to absolute flux

$$GF(\theta,\varphi) = \frac{R(\theta,\varphi)}{\sum_{\theta,\varphi} R(\theta,\varphi)} * GF \qquad \Phi(\theta,\varphi) = \sum_{SDU} \frac{n_{SDU}(\theta,\varphi)}{t_{SDU}} \frac{1}{GF(\theta,\varphi)} \frac{p_{SDU}(\theta,\varphi)}{s * cr}$$

Results – All particles (LET > 3 Kev/ μ m)

Spherical projection of angular distributions over different geomagnetic regions

+x

LET spectra integrated over angular sectors

Mean Spectra

Poles Spectra

Equator Spectra

SAA Spectra

Understanding Anisotropy: simulation

Flux Anisotropy for High-LET particles (LET > 50 KeV/μm)

Mean distribution
Quite isotropic for all particles
(LET > 3 KeV/μm)
Strong anisotropy for high-LET
particles (LET > 50 KeV/μm)
Maximum along Y-Z direction
(lower shielding)
Minimum along X direction
(higher shielding)

+Z

+X

Integrated Particle Fluxes and LET

Conclusion

- Radiation in the ISS appears mostly isotropic when total LET is considered
- When considering radiation quality the radiation is strongly anisotropic:

for LET > 50 there is almost a factor 3 difference between transversal directions (highest LET) and longitudinal one

- This measurements confirm simulations showing that increase shielding may not decrease total dose and may strongly decrease the contribution to the dose from high LET radiation
- These results should be taken into account when designing experiments sensitive to radiation quality and also should stress the importance of where and in what directions are the dosimeters/detectors positioned when attempting any comparison.