

Charged particle LET threshold determinations with the HPA neutron PADC dosemeter

L G Hager, R J Tanner, J S Eakins

WRMISS 15, Frascati, September 2010

Centre for Radiation, Chemical and Environmental Hazards

HPA PADC dosemeter

- Routine issue for neutron personal dosimetry electrochemical etch rear face
- Calibrated for neutrons $\leq 173 \text{ MeV}$
- Electrochemical etch produces indistinguishable tracks for neutrons, direct protons, and heavy ions

Poncho jacket on MATROSHKA phantom

HPA PADC dosemeters attached to poncho

PADC dosemeter neutron response in Columbus module ISS (using T Ersmark's neutron spectrum)

Representative neutron energy distributions

© HPA

HPA PADC Dosemeter Calculated response in different neutron energy distributions

Neutron energy distribution	$E_{\rm ISO}/\Phi$ (pSv cm ²)	R_{ϕ} (10 ⁻⁶ cm ²)	R(E _{iso}) (mSv⁻¹)
Ersmark Columbus module ISS Wilson NASA STS-36 Sato NASA STS with water Goldhagen <i>et al.</i> ER-2 plane	228 304 284 167	30.7 35.4 34.3 19.6	134 (16) 116 (14) 121 (15) 117 (14)
Mean	246 (31)	30.0 (3.6)	122 (14)

ELECTROCHEMICAL etch problem - Tracks similar for all charged particle types

²⁴¹Am-Be Neutron induced tracks

¹²C tracks

Secondary chemical etch shows long range charged particle tracks

Heavy charged particle track subtraction for $Z \ge 3$

Focus on Back Face of detector

Focus on Front Face of detector

LET in 1 detector thickness

Health Protection Agency

Residual range for charged particles in PADC

© HPA

Z< 3 particle contribution to the total counted tracks

Have to calculate the Z< 3 particle contribution to the counted tracks on the dosemeter

We need

- Measured LET threshold for the Z< 3 particles
- Fluence energy distributions for Z< 3 particles inside ISS

HIMAC Proton irradiations of PADC

(Performed in collaboration with NIRS)

2nd set: Repeat for 70 MeV protons

Proton LET threshold (Calibration performed at HIMAC in collaboration with NIRS)

Etchable range in PADC

- *D* = detector thickness
- *N* = measured tracks summed for peak distribution
- Φ = Applied fluence

 R_{crit} = etchable length of track (i.e. LET > LET_{crit}) If R_{crit} = D measured tracks = applied fluence

Proton LET threshold (Calibration performed at HIMAC in collaboration with NIRS)

Assessed proton LET thresholds in PADC

lon used	Angle of incidence	Etchable track length, <i>R</i> _{crit} (μm)	Maximum Energy (keV)	LET _{∞ PADC} (keV/µm)	LET _{∞ water} (keV/µm)	[#] LET _{200 PADC} (keV/μm)
¹ H 40 MeV	Normal 0°	8.7 (0.5)\$	589	45 (1)\$	33 (1)\$	24 (1)\$
¹ H 70 MeV	Normal 0°	10.0 (0.5)\$	645	43 (1) ^{\$}	31 (1)\$	22 (1)\$

- \$ 1 standard uncertainty
- [#] Using: $log(LET_{\infty} water) = 0.1689 + 0.984log(LET_{200} CR-39)$ (*E.Benton*)

70, 100, 144 keV Low energy Neutron calibrations (National Physical Laboratory, UK)

© HPA

Health Protection

Agency

- Measured proton LET_{∞ PADC} threshold ~ <u>44 keV / μ m</u>
- Measured neutron response threshold ~ 50 keV
- At 50 keV, response dominated by proton recoils
- Range of 50 keV proton in PADC ~ <u>0.6 μm</u>

> Protons detected at the surface of the PADC when $LET_{\infty PADC} > 44 \text{ keV} / \mu m$ and range > 0.6 μm : in the direction normal to the detector surface

Calculated protons inside ISS Columbus module (GEANT4)

(T Ersmark PhD thesis, June 2006, Royal Institute of Technology, Stockholm)

© HPA

Health Protection

Agency

Analytical method to determine the direct proton response Dosemeter mounted on 30 cm diameter ICRU tissue sphere

Health

Protection Agency

Angle of incidence, θ vs E_p to produce etchable tracks

© HPA

Health Protection Agency

Estimated etchable proton tracks for inside ISS

	Etchable proton tracks
Origin	(cm ⁻² d ⁻¹)
SAA belt	1.09
GCR	0.11
TOTAL	1.20 (0.35)#

1 standard uncertainty in brackets

Neutron dose estimate outside ISS using PADC dosemeter

For inside ISS the 'direct' proton contribution to the total tracks recorded by the dosemeter is currently calculated to be $\sim 8\%$.

For outside of ISS the 'direct' proton contribution to the total tracks on the dosemeter is expected to be significantly higher than inside due to the higher fluence. This would swamp the neutron contribution. Consequently, an accurate estimate of the neutron dose using the HPA dosemeter is unlikely for exposures outside the ISS.

⁴He LET threshold PADC detector stacks at HIMAC

PADC stacks: 40°, 50°, 60° incidence

Unfortunately this time the fluence used was a little low resulting in poor statistics

Health Protection Agency

Assessed ⁴He LET thresholds in PADC

lon	Angle	Etchable track length, <i>R</i> _{crit} (µm)	Energy, <i>E</i> (MeV)	LET _{∞ PADC} (keV/µm)	LET _∞ _{water} (keV/µm)	#LET _{200 PADC} (keV/μm)
	0°	130 (16)	12.8 (1.0)	58 (4)	47 (3)	34 (2)
440	40°	28 (8)\$	5.0 (1.0)\$	116 (17)\$	92 (13)\$	67 (10)\$
™e	50°	23 (8)\$	4.3 (1.1)\$	128 (23)\$	102 (19)\$	74 (14)\$
	60°	20 (13)\$	3.9 (1.9)\$	137 (57)\$	108 (47)\$	78 (35)\$

- \$ 1 standard uncertainty
- [#] Using: log(LET_∞ water) = 0.1689 + 0.984log(LET₂₀₀ CR-39) *(E. Benton)*

⁴He LET _{PADC} threshold vs. angle of incidence

Health Protection Agency

LET thresholds in PADC

lon	LET _{∞, PADC} (keV/µm)
¹ H	44
⁴ He	58
12 <mark>C</mark>	77
²⁰ Ne	44

HAMLET HIMAC 2010 ⁵⁶Fe PADC stack multiple angles of incidence 0° and 55° to 85°

HAMLET HIMAC 2010 ⁵⁶Fe PADC stack multiple angles of incidence 0° and 55° to 85°

HAMLET HIMAC 2010 ⁵⁶Fe 100 mm thick PADC stack

HAMLET HIMAC 2010 ⁵⁶Fe

© HPA

Future work

- Determine fluence energy spectra protons inside ISS

 ⁴He inside ISS

 CREME-96 spectra + 20g/cm² shielding + MCNPX
- Proton calibration at Heidelberg to obtain LET threshold vs. angle of incidence

Acknowledgements

- Yukio Uchihori and colleagues at Radiation Measurement Research Section, Fundamental Technology Center, National Institute of Radiological Sciences, Chiba, JAPAN, for providing irradiations during HAMLET HIMAC and proton ICCHIBAN.
- Part of the irradiations at NIRS were performed in the framework of HIMAC Research Project 20P-240 "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility".
- Part of the research leading to these results has been performed within the HAMLET project (<u>http://www.fp7-hamlet.eu/</u>) which has received funding from the European Community's Seventh Framework Programme (FP7) under project No. 218817, and is coordinated by the German Aerospace Center (DLR)

HAMLET internal meeting HPA Neutron dose assessment

Health Protection Agency

- How advanced is calibration ?
- What needs to be done ?
- What's achievable in 3rd year ?
- When to expect neutron dose values ?

PADC dosemeter neutron response in Columbus module ISS (using Ersmark's neutron spectrum)

Representative neutron energy distributions

© HPA

Question – Is the neutron energy distribution correct

Answer – Table below shows that variation in our dose equivalent response to selected cosmic ray spectra is not large, so choice of neutron spectra is not too critical

Neutron energy distribution	$E_{\rm ISO}/\Phi$ (pSv cm ²)	R_{ϕ} (10 ⁻⁶ cm ²)	$R(E_{iso})$ (mSv ⁻¹)
Ersmark Columbus module ISS Wilson NASA STS-36 Sato NASA STS with water Goldhagen <i>et al</i> . ER-2 plane	228 304 284 167	30.7 35.4 34.3 19.6	134 (16) 116 (14) 121 (15) 117 (14)
Mean	246 (31)	30.0 (3.6)	122 (14)

Proton LET threshold (Calibration performed at HIMAC in collaboration with NIRS)

Assessed proton LET thresholds in PADC

lon used	Angle of incidence	Etchable track length, <i>R</i> _{crit} (μm)	Maximum Energy (keV)	LET _{∞ PADC} (keV/µm)	LET _{∞ water} (keV/µm)	[#] LET _{200 PADC} (keV/μm)
¹ H 40 MeV	Normal 0°	8.7 (0.5)\$	589	45 (1)\$	33 (1)\$	24 (1)\$
¹ H 70 MeV	Normal 0°	10.0 (0.5)\$	645	43 (1) ^{\$}	31 (1)\$	22 (1)\$

- \$ 1 standard uncertainty
- [#] Using: $log(LET_{\infty} water) = 0.1689 + 0.984log(LET_{200} CR-39)$ (*E.Benton*)

Proton critical angle $LET_{\infty PADC} * \cos\theta \ge 44 \text{keV/}\mu\text{m}$ Range* $\cos\theta \ge 0.6 \mu\text{m}$

LETmin	44	ke\	V µm ^₁	d _{min}	0.60	μm															
	Angle	m.																			
E	R	- 6	0	5		10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85
(keY)	<u>(me</u>)		d L	d,				d L		d L		d L	d L	d L	d L	d L	ם ב	ם ב	ן א נ	a r	d L
30.0	0.44	92	- 32 - 1 94		91 94	- 30 F 92	· 03	, 00 1 00	103 Ves	13 7 91	77	70	100 766	53	- 53 • • • •	40	- F	- F	1	1 F	
35.0	0.49	36	7 36		36	7 95	7 93	7 90	7 87	7 83	73	74	7 68	7 62	7 55	48				- F	
37.5	0.52	98	7 98		98	7 97	7 95	7 92	789	7 85	780	75	7 69	7 63	7 56	7 49	- F	- F		- F	
40	0.54	100	1 100		- 99	7 98	7 96	7 94	7 90	7 86	7 82	76	71	7 64	5 7	7 50		- F	- T	- F	
45	0.59	103	_1 03		102	101	_ 99	_ 96	~ 93	7 89	~ 84	7 9	73	66	5 9	51			1 1	1 T	
50	0.64	105	0.6 105	0.6	105	0.6 103	0.6 101	- 39	- 35	- 91	86	80	74	67	60	52	44		1 1	1.1	
55	0.68	107	0.7 107	0.7	106	0.7 105	0.7 103	0.6 100	0.6 97	192	* 87 F oo	82	75	-63 Co	61	53	45			1	
65	0.13	100	0.1 100	0.1	101	0.1 100	0.7 104	0.7 102	0.1 30	0.6 00	0.6 289	- 100 - 1 83	77	70	- 102 - 1 60	- 04 • • •	- 40 Mai		1	1	
70	0.82	103	0.8 103	0.8	103	0.8 108	0.8 105	0.8 103	0.7 99	0.7 95	0.7 89	0.6 84	77	70	7 63	7 55	46	- F	- F	- F	
80	0.91	109	0.9 109	0.9	109	0.9 108	0.9 106	0.9 103	0.8 99	0.8 95	0.7 90	0.7 84	0.6 77	70	7 63	7 55	46	- F		- F.	
90	1.00	108	1.0 108	1.0	108	1.0 107	1.0 105	0.9 102	0.9 98	0.9 94	0.8 89	0.8 83	0.7 77	0.6 70	~ 62	5 4	46			- 	
100	1.09	107	1.1 107	1.1	107	1.1 105	1.1 103	1.0 101	1.0 97	0.9 93	0.9 88	0.8 82	0.8 76	0.7 69	0.6 61	54	45			1.1	
110	1.19	105	1.2 105	1.2	105	1.2 104	1.1 102	1.1 99	1.1 35	1.0 91	1.0 86	0.9 81	0.8 74	0.8 68	0.7 60	53	44				
120	1.28	103	1.3 103	1.3	103	1.3 101	1.2 33	1.2 31	1.2 33	1.1 83	1.0 84	1.0 73	0.3 13	0.8 66	0.7 58	0.6 51	1 i -	- F		1 F	
140	148	38	15 38	15	38	15 37	14 95	14 92	13 83	13 85	12 80	11 75	10 63	10 63	0.8 56	0.7 43	0.6				
150	1.58	96	1.6 96	1.6	35	1.6 94	1.5 92	1.5 90	1.4 87	1.4 83	1.3 78	1.2 73	1.1 68	1.0 61	0.9 55	0.8 48	0.7	- F		- F	
160	1.69	93	1.7 533	1.7	93	1.7 92	1.6 90	1.6 88	1.5 84	1.5 81	1.4 76	1.3 71	1.2 66	1.1 60	1.0 53	0.8 47	0.7	- F	- T	- F	
170	1.79	- 91	1.8 💆 91	1.8	- 90	1.8 89	1.7 88	1.7 85	1.6 82	1.6 79	1.5 74	1.4 70	1.3 64	1.2 58	1.0 52	0.9 45	0.8 💆	0.6 🍢	1 1	1 T	
180	1.90	88	1.9 88	1.9	88	1.9 87	1.8 85	1.8 83	1.7 80	1.6 77	1.6 72	1.5 68	1.3 63	1.2 57	1.1 51	1.0 44	0.8	0.6	1.2	1.1	
200	2.14	84	2.1 84	2.1	84	2.1 83	2.1 81	2.0 79	1.3 76	1.9 73	1.8 63	1.6 64	1.5 59	1.4 54	1.2 48	1.1	0.9	0.7	0.0	1	
225	2.44	75	2.4 10	2.4	74	2.4 10	2.4 10	2.0 14	2.2 12	2.1 00	2.0 00	0.0 01	0.0 53	1.0 01	1.4 45	14	1.0	0.0	0.8	1	
275	3.11	71	3.1 71	3.1	70	3.1 70	3.0 68	2.3 66	2.8 64	2.7 61	2.5 58	2.4 54	2.2 50	2.0 45	1.8	1.6	1.3	11	0.8	- F	
300	3.47	67	3.5 67	3.5	67	3.4 66	3.4 65	3.3 63	3.1 61	3.0 58	2.8 55	2.7 51	2.5 47	2.2	2.0	1.7	1.5	1.2	0.9	0.6 🍢	
325	3.85	64	3.9 64	3.8	64	3.8 63	3.7 62	3.6 60	3.5 58	3.3 55	3.2 52	2.3 43	2.7 45	2.5	2.2 🍢	1.9 🍢	1.6 🍢	1.3 🍢	1.0 🍢	0.7 🍢	
350	4.25	61	4.3 61	4.2	61	4.2 60	4.1 59	4.0 57	3.9 55	3.7 53	3.5 50	3.3 47	3.0	2.7	2.4	2.1	1.8	1.5	1.1	0.7	
375	4.66	53	4.7 59	4.6	58	4.6 58	4.5 57	4.4 55	4.2 53	4.0 51	3.8 48	3.6 45	3.3	3.0	2.7	2.3	2.0	1.6	1.2	0.8	
400	5.03	50	5.1 55	5.1	00 50	5.0 55	4.3 54	4.8 53	4.6 51	4.4 43	4.2 46	3.3	3.6	3.31	2.3	2.5	2.2	2.1	1.3	10.9	
500	6.33	43	7.0 43	7.0	49	6.3 48	6.8 47	5.6 45	6.3 44	61	57	54	4.2	45	4.0	35	30	24	18	12	0.6
550	8.0	46	8.0 46	8.0	46	7.3 45	7.8 45	7.6	7.3	7.0	6.6	6.2	5.7	5.2	4.6	4.0	3.4	2.7	2.1	1.4	0.7
600	9.2	##	9.2	9.1 ^r		3.0 M	8.8	8.6 🚩	8.3 🗖	7.9 💆	7.5	7.0 🚩	6.5	5.9	5.2	4.6	3.9	3.1	2.4	1.6 🚩	0.8
650	10.3	42	10.3 🍢 👘	10.3		10.2 🎽	10.0 🎽	9.7 🎽	9.4 🍢	8.9 🍢	8.5	7.9 🍢	7.3	6.6 🍢	5.9 🍢	5.2	4.4	3.5	2.7	1.8	0.9
700	11.6	40	11.6	11.5		11.4	11.2	10.9	10.5	10.0	3.5	8.8	8.2	7.4	6.6	5.8	4.9	4.0	3.0	2.0	1.0
800	14.2	36	14.2	14.1		14.0	13.7	13.3	12.9	12.3	11.6	10.9	10.0	9.1	8.1	7.1	6.0	4.8	3.7	2.5	1.2
900	17.0	34	20.1	17.0		16.8	10.4	10.0	15.4	14.7	13.9	13.0	12.0	10.9	9.8	8.5	0.2	5.8	4.4	3.0	1.5
1000	20.1	32	20.11	20.0 *		13.8 1	13.4	10.3	18.2	11.4	10.4	15.4 1	14.2	12.31	11.5 1	10.0 *	0.51	0.31	5.21	3.51	LI

Analytical method to determine the direct proton response Dosemeter mounted on 30 cm diameter ICRU tissue sphere

Health

Protection Agency

Detectable proton energy ranges

			Lowe	est ene	ergy dete	cted	Highest energy detected						
e	e	Ω	/ ICRE	ln(7)	ln(E(/))	E(7)	/ PADC	/ ICRE	1.0	ln(ル る)	ln(E(/+ø'))	E(/+ø')	ΔE
(\cdot)	(rad)	(sr)	(mm)			(Me¥)	(µm)	(µm)	(mm)			(Me¥)	(Me¥)
0	0.000	0.006	5.00	1.610	3.067	21.48	9.20	11.51	5.012	1.612	3.068	21.51	0.0251
5	0.087	0.048	5.02	1.613	3.069	21.53	8.00	10.01	5.029	1.615	3.070	21.55	0.0216
10	0.175	0.095	5.08	1.625	3.076	21.66	7.90	9.89	5.087	1.627	3.076	21.68	0.0212
15	0.262	0.142	5.18	1.644	3.086	21.89	7.80	9.76	5,186	1.646	3.087	21.91	0.0207
20	0.349	0.187	5.32	1.672	3.101	22.22	6.60	8.26	5.329	1.673	3.102	22.24	0.0170
25	0.436	0.232	5.52	1.708	3.121	22.67	6.30	7.88	5.525	1.709	3.122	22.68	0.0159
30	0.524	0.274	5.77	1.753	3.146	23.24	5.20	6.51	5.780	1.754	3.146	23.25	0.0125
35	0.611	0.314	6.10	1.809	3.176	23.96	4.20	5.26	6,109	1.810	3.177	23.97	0.0096
40	0.698	0.352	6.53	1.876	3.213	24.85	3.60	4.50	6.532	1.877	3.213	24.86	0.0077
45	0.785	0.388	7.07	1.956	3.257	25.96	2.70	3.38	7.074	1.956	3.257	25.97	0.0052
50	0.873	0.420	7.78	2.051	3.309	27.35	2.00	2.50	7.781	2.052	3.309	27.35	0.0033
55	0.960	0.449	8.72	2,165	3.371	29.11	1.40	1.75	8.719	2.166	3.371	29.11	0.0017
60	1.047	0.475	10.00	2.303	3.446	31.38	1.00	1.25	10.00	2.303	3.446	31.38	0.0008
65	1.134	0.497											
70	1.222	0.515											
75	1.309	0.529											
80	1.396	0.540											
85	1.484	0.546											
90	1.571	0.548											
95	1.658	0.546											
100	1.745	0.540											
105	1.833	0.529											
110	1.920	0.515											
115	2.007	0.497			4			4.05		F 044	4.050		
120	2.094	0.475	150.00	5.011	4.958	142.32	1.00	1.25	150.00	5.011	4.958	142.32	0.0007
125	2.182	0.449	172.07	5.148	5.037	153.98	1.40	1.75	172.07	5.148	5.037	153.98	0.0009
130	2.269	0.420	192.84	5.262	5.102	164.41	2.00	2.50	192.84	5.262	5.102	164.42	0.0012
135	2.356	0.388	212.13	0.307	5.157	173.71	2.70	3.38	212.14	5.357	5.157	1/3.72	0.0016
140	2.993	0.352	223.81	0.437	5.204	100.15	3.60	9.00	223.82	0.437	5.204	181.33	0.0021
190	2.031	0.314	240.70	0.004	0.243	105.10	9.20	0.26	240.70	0.004	0.293	105.10	0.0023
150	2.518	0.274	203.81	5,560	5.275 5.201	133.35	0.20	5.01	203.81	5.060	5.275 5.201	200 60	0.0028
100	2.705	0.232	271.83	5.605	5.301	200.00	6.30	7.88	271.30	0.600	5.301 5.200	200.60	0.0034
100	2.733	0.187	201.91	5.642	0.322 5.322	209.00	5.60	0.26	201.32	0.64Z	5.322 5.220	209.85	0.0035
170	2.060	0.142	203.78	5,663	0.338	200.17	7.60	3.76	203.73 295.45	0.663 E.COO	0.338	210 54	0.0041
170	2.367	0.035	200.00	5,566	5.350 5.250	210.93	7.30	3.83	200.40	0.669 5.700	5.300 5.250	210.04	0.0041
180	3.034	0.000	300.00	5 704	5 359	212.42	9.00	11.51	300.01	5 704	5 359	212 42	0.0041

© HPA

Calculated protons inside ISS Columbus module (GEANT4)

(T Ersmark PhD thesis, June 2006, Royal Institute of Technology, Stockholm)

© HPA

Health Protection

Agency

Estimated etchable proton tracks for inside ISS

	Etchable proton tracks
Origin	(cm ⁻² d ⁻¹)
SAA belt	1.09
GCR	0.11
TOTAL	1.20 (0.35)#

1 standard uncertainty in brackets

Etchable energy windows for protons

Etchable energy windows for helium ions

Future work

- How advanced is calibration ?
- Neutron calibration good, un-finalised contribution to signal mainly from protons, ⁴He.
- What needs to be done ?
- Use MCNPX_2.6 to determine the fluence-energy-angle distributions of the particle fields inside the ISS. Use CRÈME-96 to produce incident spectra. Assume shielding of 20 g/cm².
- What's achievable in 3rd year ?
- Assuming the fluence energy distributions are derived (at least for proton and ⁴He), then a more reliable estimate of the unwanted contribution to the dosemeter signal, and a better neutron dose estimate.
- When to expect neutron dose values ?
- Realistically this is probably 4 6 months away.

Ranges of protons in PADC for different initial energies TRIM calculation

Health Protection

Agency

Galactic Cosmic Radiation at top of atmosphere

Protons	86 %
Helium nuclei	12 %
Electrons Positrons	2 %
Heavier nuclei	< 1%

TRIM calculation of ionization ⁵⁶Fe

© HPA

HIMAC ⁵⁶Fe: 23.331 GeV + 56.70 mm water equiv PMMA

Health Protection

Agency

HIMAC ¹²C: 4.582 GeV + 220.37 mm water equiv PMMA

BEFORE PEAK of measured response - highly variable track sizes

AT PEAK of measured response - uniform track sizes

HIMAC ¹²C: 4.582 GeV + 220.37 mm water equiv PMMA

TRIM calculation of ionization ¹²C

Health Protection

Agency

Residual range vs *E*_{max} in PADC

TRIM calculation of ionization ⁴He

© HPA

Health Protection

Agency

Proton calibrations to determine LET_{crit}

Options available:

PSI 62 MeV, 250 MeV TSL 200 MeV Heidelberg 250 MeV?

- 62 MeV: range in water = 32 mm straggling 1.3 mm (SRIM 2008)
- 250 MeV range in water = 300 mm straggling 12 mm (SRIM 2008)

Preferred arrangement: 250 MeV through build-up to give a lot of straggling Several angles would be desirable High enough fluence to give good statistics

Methods – need to get rid of the charged particles

Simple method to get neutron dose

$$H = \frac{N - \overline{B}}{R_{\rm ISS}}$$

H = Dose equivalent

- N = Total Tracks counted
- *B* = Background tracks

R_{ISS} = Dosemeter dose equivalent response for ISS

But, unwanted charged particles are also recorded by the PADC dosemeter – these need to be removed

$$H = \frac{N - N_{CP} - \overline{B}}{R_{ISS}}$$

 $N_{\rm CP}$ = Tracks from charged particles

HIMAC irradiation of PADC stacks

HIMAC ⁴He: 577.14 MeV + 139.08 mm water equiv PMMA

Distance into PADC stack (mm)

Assessed LET thresholds in PADC

lon	Angle	Etchable track length, <i>R</i> _{crit} (µm)	Energy, <i>E</i> (MeV)	LET _{∞ PADC} (keV/µm)	LET _∞ _{water} (keV/µm)	[#] LET _{200 PADC} (keV/μm)
	0°	130	12.8	(58)	47	33
	40°	37 (8)\$	5.8 (0.8)\$	105 (11)\$	83 (8)\$	60 (6)\$
⁴He	50°	33 (15)\$	5.3 (1.7)\$	118 (27)\$	93 (21)\$	68 (16) ^{\$}
	60°	29 (19)\$	4.6 (2.3)\$	141 (50)\$	112 (40)\$	82 (30)\$
	70°	24 (14)\$	4.1 (1.8)\$	146 (45)\$	116 (36)\$	85 (27)\$
¹² C	0°	2.886 mm	403.6	77	62	44
⁵⁶ Fe	0°	> 3 m		-		
²⁰ Ne	0°	-	6020	(44)	35	25

- \$ 1 standard uncertainty
- [#] Using: $log(LET_{\infty} water) = 0.1689 + 0.984log(LET_{200} CR-39)$

Incident Proton spectra at ISS orbit

© HPA

Health Protection

Agency