15th WRMISS

A proposal on CR-39 PNTDs analysis for space radiation dosimetry

N. Yasuda, <u>S. Kodaira</u>, Y. Uchihori, H. Kitamura, M. Kurano, H. Kawashima *National Institute of Radiological Sciences (NIRS)*

T. Berger *DLR - German Aerospace Center*

Discrepancy of LET spectrum and dose results obtained by CR-39 PNTDs

Preliminary results of CR-39 PNTDs measured by some Institutes in the DOSIS-I experiment have some discrepancies on LET spectra and dose results of \pm > 40 % (T. Berger, 15th WRMISS presentation)

- ✓ Difference of material
- ✓ Difference of track measurement and analysis methods

For the understanding of such discrepancies... Verify the variation of dose result by:

- 1) Position dependency
- 2) Analyzing area size dependency
- 3) Track selection criteria dependency

Trials were done as the part of work in DOSIS-I

Typical "*NIRS method*" for sapce radiation dosimetry

- Detector: HARZLAS/TD-1 (0.9 mmt)
- Etching condition: 7mol/l NaOH 70°C 8hr

→ Bulk etch: 14.7 μ m

- Scanning: HSP-1000 microscope x20 (0.35mm/pix res.)
 Area size 4mm²
- Analysis: Semi-automatic analysis by PitFit software
 - Select only penetrating track by eye (i.e. taking no over-etched track)
 - Track registration sensitivity ($S=V_t/V_b-1$) is obtained using the track size of opening-mouth:

$$S \equiv \frac{V_t}{V_b} - 1 = \sqrt{\frac{16B^2D^2}{(4B^2 - d^2)^2} + 1} - 1$$

Typical "NIRS method" for space radiation dosimetry

- Detector: HARZLAS/TD-1 (0.9 mmt)
- Etching condition: 7mol/l NaOH 70°C 8hr

→ Bulk etch: 14.7µm

- Scanning: HSP-1000 microscope x20 (0.35mm/pix res.)
 Area size 4mm²
- Analysis: Semi-automatic analysis by PitFit software
 - Select only penetrating track by eye (i.e. taking no over-etched track)
 - Track registration sensitivity ($S=V_t/V_b-1$) is obtained using the track size of opening-mouth:

$$S \equiv \frac{V_t}{V_b} - 1 = \sqrt{\frac{16B^2D^2}{(4B^2 - d^2)^2} + 1} - 1$$

Typical "NIRS method" for space radiation dosimetry

- Detector: HARZLAS/TD-1 (0.9 mmt)
- Etching condition: 7mol/l NaOH 70°C 8hr

→ Bulk etch: 14.7 μ m

- Scanning: HSP-1000 microscope x20 (0.35mm/pix res.)
 - Area size 4mm²
- Analysis: Semi-automatic analysis by PitFit software
 - Select only penetrating track by eye

(i.e. taking no over-etched track)

- Track registration sensitivity ($S=V_t/V_b-1$) is obtained using the track size of opening-mouth:

$$S \equiv \frac{V_t}{V_b} - 1 = \sqrt{\frac{16B^2D^2}{(4B^2 - d^2)^2} + 1} - 1$$

Typical "*NIRS method*" for space radiation dosimetry

- Detector: HARZLAS/TD-1 (0.9 mmt)
- Etching condition: 7mol/l NaOH 70°C 8hr

→ Bulk etch: 14.7 μ m

- Scanning: HSP-1000 microscope x20 (0.35mm/pix res.)
 Area size 4mm²
- Analysis: Semi-automatic analysis by PitFit software
 - Select only penetrating track by eye

(i.e. taking no over-etched track)

- Track registration sensitivity ($S=V_t/V_b-1$) is obtained using the track size of opening-mouth:

$$S \equiv \frac{V_t}{V_b} - 1 = \sqrt{\frac{16B^2D^2}{(4B^2 - d^2)^2} + 1} - 1$$

1) Position dependency

- Trial 1
- Difference of dose results for the measurement position on the detector with the detector size of 16mmx16mm
 - Analysis at different 3 positions (#1, #2, #3)
 - Analyzing area size for each position is 2mmx2mm

Dose results for different 3 positions. LET threshold: 10 keV/ μ m.

	D [mGy]	H [mSv]	D rate [uGy/d]	H rate [uSv/d]	Q	Track density [cm- ²]
#1	2.1 ± 0.1	24.1 ± 2.6	15.1 ± 1.0	177.8 ± 19.4	11.8 ± 1.5	6432
#2	2.1 ± 0.2	27.6 ± 2.9	15.8 ± 1.1	203.5 ± 21.5	12.9 ± 1.6	6308
#3	2.2 ± 0.2	30.2 ± 3.1	16.2 ± 1.2	222.2 ± 22.5	13.7 ± 1.7	6184

Remarkable dose dispersion was not found for position difference of 16 mm x 16 mm in size.

2) Analyzing area size dependency

Trial 2

Difference of dose results for the difference of area size: 4 mm² and 12 mm²

Dose results for $4mm^2$ and $12mm^2$ area sizes. LET threshold: $10 \text{ keV}/\mu m$.

	D [mGy]	H [mSv]	D rate [uGy/d]	H rate [uSv/d]	Q	Track density [cm- ²]
4mm ²	2.1 ± 0.1	24.1 ± 2.6	15.1 ± 1.0	177.8 ± 19.4	11.8 ± 1.5	6432
12mm ²	2.1 ± 0.1	27.3 ± 1.7	15.7 ± 0.6	201.2 ± 12.2	12.8 ± 0.9	6308

• 3 times measurement statistics $(4mm^2 \rightarrow 12mm^2)$:

- LET range: <366 keV/ μ m@4mm² \rightarrow <447 keV/ μ m@12mm²
- Remarkable dose dispersion was not found (within error bar)
- Detected number of penetrating track over 500 keV/ μ m:
 - $4 \text{ mm}^2 \rightarrow 0 \text{ event}$
 - 12 mm² \rightarrow 1 event
 - # This 1 event data was not included in the results because the measured track registration sensitivity (S) is too high to be out of range in our method (Limitation of S measurement in NIRS method is S<20)

Calibration of NIRS CR-39 PNTD (TD-1)

- Measurable range of track registration sensitivity (S) is S=0.01~20 in our analysis method
- \rightarrow Calibrated LET range is from 5 to 450 keV/ μ m (proton~Krypton)

For detecting very high LET particles over 500 keV/ μ m, how large are size of CR-39 should we analyze ?

We need to analyze about 10 times area size for detecting a very high LET (>~500keV/ μ m) penetrating particle comparison with a Fe track, because its abundance is about 10⁻¹ for Fe abundance

Fig. 10. LET distribution for GCR particles observed by RRMD-III on board STS-89.

Possibility of "self-calibration" of LET spectrum using relativistic Fe peak appeared around 135 keV/μm

Relativistic Fe peak appeared on the LET spectrum can be used as self-calibration of CR-39 PNTDs during on-flight, because the Fe peak is obvious evidence of GCR component marking on the LET spectrum

Fig. 10. LET distribution for GCR particles observed by RRMD-III on board STS-89.

[case-1] Only penetrating tracks are analyzed → NIRS method [case-2] All tracks are analyzed including over-etched tracks

[case-1] Only penetrating tracks are analyzed [case-2] All tracks are analyzed including over-etched tracks

Dose results for 2 case of track selection. # Area size: 12 mm²

	D [mGy]	H [mSv]	D rate [uGy/d]	H rate [uSv/d]	Q	Track density [cm- ²]
Case-1	2.1 ± 0.1	27.3 ± 1.7	15.7 ± 0.6	201.2 ± 12.2	12.8 ± 0.9	6308
Case-2	2.9 ± 0.1	39.6 ± 2.0	21.7 ± 0.8	291.7 ± 15.1	13.5 ± 0.9	8106

- Dose equivalent rate obtained by taking all tracks including over-etched tracks ([case-1]) is +45% larger than the case by taking only penetrating track ([case-2])
- Treatment of over-etched tracks largely contributes to the 10³ dose variation

How to treat over-etched tracks

- Considerable candidate of such over-etched track is short range track produced by the proton-induced target fragmentation reaction
- For the precise measurement of short range tracks:
 - AFM method
 - 3D track determination method etc.
 - \rightarrow There are some difficulties for routine monitoring
 - → Need to research for the quantitative evaluation of additional dose contribution
- For the convenient way to include short range tracks:
 - Short and long etching combination method
 - → Need to determine adequate bulk etch condition and how to combine both data

Summary

Position dependency

Remarkable dose dispersion was not found for position difference of 16 mm x 16 mm in size

Analyzing are size dependency

- Increase of statistics to be 3 times (4 mm² \rightarrow 12 mm²) did not make a remarkable change of dose results
- We need to analyze about 10 times area size for detecting a very high LET (>~500keV/ μ m) penetrating particle comparison with a Fe track

Track selection criteria dependency

- Dose equivalent rate obtained by taking all tracks including over-etched tracks is +45% larger than the case by taking only penetrating track
- How to treat over-etched tracks is important

Suggestion of discussion for making guide line on CR-39 analysis

1. Analyzing area size

- Recommendation of statistics (analyzing area size) for detecting very high LET particles (penetrating) >500 keV/ μ m

2. How to treat the over-etched tracks

- Common methodology for the routine monitoring of daily dose
 - e.g.) short and long etching combination
 - * Common condition of bulk etch
 - * Common way to combine the data from short & long etchings

Working Group Prepare the Guideline on CR-39 Analysis (all of you agree)

Nakahiro will be back...soon!

Back up slides

T. Berger, 38th COSPAR presentation

T. Berger, 38th COSPAR presentation

DOSIS – CR-39 Preliminary results

	LET range [keV/µm]	D [mGy]	H [mSv]	Q [mean]
4	10 – 446	6.36	77.75	12.22
	8.2 – 366	3.424	34.28	10.01
AEK	10 – 1000	4.07	39.35	9.66
DLR	10 – 3305	5.13	71.216	13.89
NASA CO	10 - 2600	5.08	53.80	10.59

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

38th COSPAR Scientific Assembly, Bremen, 18-25 July 2010 / F24-0010-10> 43

