

Calculation of Bubble Detector Response Using Data from the Matroshka-R Study

B. J. Lewis¹, T. Matthews², S. El-Jaby¹, L. Tomi², M. Smith³,
H. Ing³, H.R. Andrews³, V. Shurshakov⁴, I. Tchernykh⁴

¹Royal Military College
 ²Canadian Space Agency
 ³Bubble Technology Industries
 ⁴Institute of Biomedical Problems

15th WRMISS Workshop Radiation Monitoring for the International Space Station September 7-9 2010

Motivation

- In 2009, WRMISS asked Canadian Space Agency to prepare an overview paper on Bubble Detector Technology which would:
 - Highlight all the work and previous publications on Bubble
 Detector technology
 - Summarize data on Bubble Detector response to neutrons, protons, and HZE particles.

1 of 19 OUTLINE

- Introduction
- Bubble Detector Characterization Studies
- Mission Applications
 - Russian Matroshka-R
 - Session 8 : Proton and Neutron Studies
 - Session 7 : Heavy Ion Studies
- Contributions of Protons, Neutrons, and Heavy Ions to Bubble Count
- Conclusions

Introduction

2 of 19 Neutron Dosimetry in Space

Bubble Detector

- There exists a complex particle and neutron field in space.
 - Albedo neutrons from Earth's atmosphere and secondary production from spacecraft shielding contributes ~10-30% of total dose equivalent.
 - TEPC reliable doses <20 MeV (response to higher energies?)
 - CR-39 passive dosimeters complement TEPC (and TLDs)

Introduction

Bubble Detector

Experimental Apparatus

- Space bubble detectors (SBD's)
 - Used in space applications since 1989, including Russian Matroshka-R (2006,-2008)

3 of 19

- Test-tube-shaped neutron dosimeter developed by Bubble Technology Industries Inc. (BTI)
- Microscopic liquid droplets form bubbles of trapped gas upon contact with neutrons.
- Number of bubbles can be auto-counted using a reader and is indicative of the neutron radiation field intensity.

Introduction

Experimental Apparatus

Bubble reader aboard the ISS Russian Segment

4 of 19

Source: Bubble Technology Industries http://www.bubbletech.ca/radiation_detectors_files/bdr.html

Neutrons

Protons and Heavy lons

- Neutrons
 - Defence Research and Development Canada Ottawa (DRDC-O) [1980's]
 - National Institute of Standards and Technology (NIST) [1990]
 - Thermal Neutrons (144 keV)
 - National Physical Laboratory (NPL) Van de Graff Accelerator [1990]
 - 7 Li(p,n) \rightarrow 0.033 to 0.627 MeV
 - T(p,n) \rightarrow 0.214 to 2.22 MeV
 - D(d,n) \rightarrow 2.03 to 5.26 MeV
 - T(d,n) \rightarrow 13 to 18 MeV
 - CERN/European Commission High Energy Reference Field (CERF) [2002]
 - Simulated space spectrum
 - Integral neutron field
 - iThemba [2007]
 - High energy neutrons (100 and 200 MeV)

- Protons
 - Tri-University Meson Facility (TRIUMF) [2003]
 - 81.7 MeV (as protons entered experimental apparatus)
 - 77 MeV (as protons entered the detector)
 - National Institute of Radiological Sciences (NIRS) [2004]
 - 35, 50 and 70 MeV
- Heavy lons
 - Heavy Ion Medical Accelerator in Chiba (HIMAC) [2006]
 - Irradiated with N, Kr and Ar ions at 180, 400, and 500 $\rm MeV/u$ respectively.

Matroshka-R Experiments

- Performed over a series of experimental sessions
 - ISS-13 (Sessions 1 & 2) [2006]
 - ISS-14 (Sessions 3 and 4) [2007]
 - ISS-15 (Sessions 5, 6 and <u>7</u>) [2007/2008]
 - ISS-16 (Sessions <u>8</u> and 9) [2008]
- Experiments performed using a spherical phantom with detectors placed on inside and outside of sphere.

Detector Locations for Sessions 7 and 8

• Session 7 (ISS-15) : phantom placed in the Russian docking module

8 of 19

- B01, B02, B03 placed on surface of phantom
- B04 located behind the phantom on outer wall of the cabin
- B05, B06 located on internal wall of cabin
- Session 8 (ISS-16) : phantom place in the Russian PIRS module
 - B01, B02, B03 gelled to the surface of phantom
 - BO4 located in the service module (SM) starboard cabin
 - B06, B07 were located in the SM, close to the astronaut working desk
 - B08 located in the SM (on the ceiling by the R16 radiometer)

Matroshka-R Experiments

Measurements for Sessions 7 and 8

Matroshka-R Results for Session 7										
Detector Label B01 B02 B03 B04 B05 B										
Sensitivity (bubble/µSv)	0.123	0.117	0.111	0.111	0.099	0.093				
Exposure Time (s)	6.09E+05	6.09E+05	6.08E+05	6.08E+05	6.09E+05	6.09E+05				
Number of bubbles	99	98	94	106	104	71				
Dose (µSv)	803	838	845	951	993	697				
Dose Rate (µSv/day)	114	119	120	135	141	99				

Maschrafi et al., Neutron Dose Study With Bubble Detectors Aboard the International Space Station as part of the Matroshka-R Experiment, Radiation Protection Dosimetry, Advance Access Publication, Vol. 133, No. 4, pp. 200-207, 2009

Matroshka-R Results for Session 8										
Detector Label B01 B02 B03 B04 B06 B07										
Sensitivity (bubble/µSv)	0.123	0.117	0.111	0.111	0.099	0.093	0.086			
Exposure Time (s)	4.47E+05									
Number of bubbles	72	71	64	105	73	71	48			
Dose (µSv)	585	605	574	947	740	766	554			
Dose Rate (µSv/day)	113	117	111	183	143	148	107			

Internal Report: Bubble Technology Industries Inc. (2009). *Matroshka-R Experiment Phase 2*. Chalk River, ON, Canada: Bubble Techology Industries Inc.

Analysis

- Particle flux estimate (CREME96 with shielding function)
- Differential flux: neutrons, protons and heavy ions (He, N, O and Ar)
- Integrated differential flux:
 - Neutrons (0.25 100 MeV) \rightarrow 1.70 x 10⁵ neutrons/cm²/s
 - Protons (10 MeV 100 GeV) \rightarrow 6.3 x 10⁵ protons/cm²/s
- Detector sensitivity S_d (bubbles/µSv)
- Particle sensitivity $S_{p,n}$ (b/(particle/cm²)/(b/µSv))
- Experiment duration, t (s)
- 4π particle incidence

Shielding Function

*Bubble Technology Industries, Matroshka-R Experiment Phase 2 - FINAL REPORT, August 10, 2010

Neutron and Charged Particle Spectra $\phi_{n,p}(E)$

*Koshiishi et al, Evaluation of the Neutron Radiation Environment Inside the International Space Station Based on Bonner Ball Neutron Detector Experiment, Radiation Measurements, 2007, 1510-1520 *Charged particle differential flux from CREME96

Calculation Methodology

• Rate of bubble formation for protons (bubble/s)

$$\dot{\mathbf{N}}_{b} = 4\pi S_{d} \int_{E_{lower}}^{E_{upper}} \varphi_{p}(E) S_{p}(E) dE \sim 4\pi S_{d} \sum_{10 \text{ MeV}}^{100 \text{ GeV}} (E) S_{p}(E) \Delta E$$

- Proton sensitivity (energy independent): $S_p = 5.0 \times 10^{-6} \text{ b}/(\text{p/cm}^2)/(\text{b}/\mu\text{Sv})^*$
- Lower energy limit of 10 MeV (Proton penetration through detector shell)

*H. Ing and A. Mortimer, Advances in Space Research (1993)

Calculation Methodology

• Protons contribute <1% to overall bubble count:

4πS _p Σ [φ _p (E)∆E] (b/(b/μSv)/s)	Detector Label	S _d (b/µSv)		N _p (bubbles/ s)	Time (s)		N (bubbles from protons)	# of bubbles determined from BTI Report	Proton Contribution %
4.49E-06	BO1	0.123	معمد المعمد المع	5.52E-07	4.47E+05		0.25	72	0.34
4.49E-06	B02	0.117	میں میں میں میں میں میں اور	5.25E-07	4.47E+05	and the second	0.23	71	0.33
4.49E-06	B03	0.111	and the second secon	4.98E-07	4.47E+05		0.22	64	0.35
4.49E-06	B04	0.111	من م	4.98E-07	4.47E+05		0.22	105	0.21
4.49E-06	B06	0.099	and the second secon	4.44E-07	4.47E+05		0.20	73	0.27
4.49E-06	B07	0.093	and the second secon	4.17E-07	4.47E+05		0.19	71	0.26
4.49E-06	B08	0.086		3.86E-07	4.47E+05		0.17	48	0.36
						Mean	0.21	72	0.30

*Takada et al, Measured Proton Sensitivities of Bubble Detectors, Radiation Protection Dosimetry, Vol. 111 (2), 181-189)

Proton energy (MeV)

Neutron Response Function $(S_n(E))$

*Bubble Technology Industries, Report on Characterization of the Space Bubble Detector Spectrometer, March 31st 2010 (Detector sensitivity of 0.1 bubble µSv⁻¹)

Predicted Versus Measured Bubble Count for Neutrons (Matroshka-R Session 8)

$$\dot{\mathbf{N}}_{b} = 4\pi S_{d} \int_{E_{lower}}^{E_{upper}} \varphi_{n}(E) S_{n}(E) dE \sim 4\pi S_{d} \sum_{0.25 \text{ MeV}}^{100 \text{ MeV}} (E) S_{n}(E) \Delta E$$

4πΣ [φ _n (E) * Sn(E)*∆E] (b/(b/μSv)/s)	Detector Label	Detector Sensitivity S _d (b/µSv)	# of Bubbles/s	Time Elapsed (s)		Total # of Bubbles due to Neutrons	Bubble Count during Matroshka-R	Measured Value/ Predicted Value
7.57E-04	BO1	0.123	9.31E-05	447000		42	72	1.73
7.57E-04	B02	0.117	8.86E-05	447000		40	71	1.79
7.57E-04	B03	0.111	8.41E-05	447000		38	64	1.70
7.57E-04	B04	0.111	8.41E-05	447000		38	105	2.79
7.57E-04	B06	0.099	7.50E-05	447000		34	73	2.18
7.57E-04	B07	0.093	7.04E-05	447000		31	71	2.26
7.57E-04	B08	0.086	6.51E-05	447000		29	48	1.65
	Mean:	0.106			Mean:	36	72	2.01

• Reasonable agreement of number of bubbles predicted using neutron differential spectra from Koshiishi et al. with Matroshka measurement (factor of ~ 2).

CSA ASC

Heavy Ion Contributions

- Calculations for Linear Energy Transfer (LET)
- $P_{bf}(x) = 1 e^{(-n\sigma x)}$
 - n = # of droplets per cm³ (active volume of detector)
 - $\sigma = cross section of droplet$
 - x = critical distance the particle travels above threshold
- Considers minimum and maximum energy to enter and pass completely through detector
- Calculations for Nuclear Interaction
- $X + {}^{19}F$ interactions (scaled to $p + {}^{19}F$) to determine heavy ion sensitivities

• $\sigma_{pT} = \pi r_o ((A_p)^{1/3} + ((A_T)^{1/3} - b)^{1/2}$ - σ_{pT} is cross section for interaction of projectile (p) and target (T) nuclei - $A_{p,T}$ is the mass number

- b is the overlap parameter b = $1.56 - 0.2((A_p)^{1/3} + ((A_T)^{1/3})^2)$

Heavy Ion Calculation : LET

• Heavy ions contribute $\sim 0.02\%$ to overall bubble count due effect of linear energy transfer (LET):

Matroshka-R Results for Session 7											
Detector Labe	Detector Label B01 B02 B03 B04 B05 B06										
Sensitivity (bubble/µSv)	0.123	0.117	0.111	0.111	0.099	0.093					
Exposure Time (s)	6.09E+05	6.09E+05	6.08E+05	6.08E+05	6.09E+05	6.09E+05					
Number of bubbles	99	98	94	106	104	71					
Dose (µSv)	803	838	845	951	993	697					
Dose Rate (µSv/day)	114	119	120	135	141	99					

*Bubble Technology Industries, Matroshka-R Experiment Phase 2 - FINAL REPORT, March 31st 2009, Revised: August 10th 2010

Element	lon Mass	Min Energy* (MeV)	Min Energy (MeV/nuc)	Max Energy** (MeV)	Max Energy (MeV/nuc)	Critical Distance (cm)	Bubble Formation Probability	4πΣ of Integrated Flux (particles/cm²/s)	Flux Ions (/s)	Bubbles due to lons	Observed Bubbles	Bubbles due to lons (%)
He	4	35	8.75	150	150	0.0035	1.88E-05	6.33E-05	3.37E-04	3.85E-03	99	0.00389
Ν	14	250	17.86	1000	71.43	0.121	6.50E-04	1.25E-06	6.66E-06	2.63E-03	99	0.00266
0	16	300	18.75	1300	81.25	0.181	9.72E-04	3.93E-06	2.09E-05	1.24E-02	99	0.01249
Ar	40	1100	27.5	5000	125	0.859	4.60E-03	1.52E-07	8.10E-07	2.27E-03	99	0.00229
											Sum:	0.02133

Heavy Ion Contribution for Detector B01:

*Energy required to enter the detector

**Energy required to travel at least the length of the detector

Heavy Ion Calculation : Nuclear Interaction

- Heavy ions contribute $\sim 0.03\%$ to overall bubble count due effect of nuclear interactions:

Matroshka-R Results for Session 7										
Detector Label	BO1	B02	B03	B04	B05	B06				
Sensitivity (bubble/µSv)	0.123	0.117	0.111	0.111	0.099	0.093				
Exposure Time (s)	6.09E+05	6.09E+05	6.08E+05	6.08E+05	6.09E+05	6.09E+05				
Number of bubbles	99	98	94	106	104	71				
Dose (μSv)	803	838	845	951	993	697				
Dose Rate (µSv/day)	114	119	120	135	141	99				
		* 0 1								

*Bubble Technology Industries, Matroshka-R Experiment Phase 2 -FINAL REPORT, March 31st 2009, Revised: August 10th 2010

Heavy Ion Contribution for Detector B01:

Element	Σ of Integrated Flux (particles/cm ² /s)	lon Sensitivity (bubble/(bubble/uSv)(p article/cm2))	Sensitivity to Neutrons (bubble/uSv)	Bubbles due to lons (/s)	Measurement Time (s)	Bubbles due to lons	Observed Bubbles	Nuclear Interaction Contribution to Bubble Count (%)
He	4.55E-02	8.66E-06	0.123	4.84E-08	6.09E+05	0.0295	99	0.02978
z	3.07E-04	1.63E-05	0.123	6.17E-10	6.09E+05	0.0004	99	0.00038
0	8.36E-04	1.76E-05	0.123	1.81E-09	6.09E+05	0.0011	99	0.00111
Ar	1.45E-05	3.10E-05	0.123	5.52E-11	6.09E+05	0.0000	99	0.00003
							Sum:	0.03131

Summary

- The passive BD dosimeter developed in Canada has been used for neutron radiation monitoring in space since 1989
- During 2006-2008, BDs have been used in the Russian Matroshka-R study aboard International Space Station (ISS) during four expeditions (ISS-13, -14, -15 and -16).
- Using response data for neutrons, protons and heavy ions, based on comprehensive review of all literature bubble-detector data, along with differential-flux data calculated using the CREME code, calculations performed to determine contribution of charged particles to bubble formation
 - <u>Charged particles have a negligible overall contribution to</u> <u>the bubble count (< 0.5%)</u>

- Protons below 10 MeV cannot penetrate the shell of the detector (SRIM Calculation)
- We have an isotropic flux in space (4π)
- We have come at the response function in two separate ways
 - We also folded in the response function measured at HIMAC by Takada
 - (differential flux derived with CREME96 with an appropriate shielding function (RUSSIAN) for charged particle spectrum + heavy ions
- We used the same methedology for neutrons and simply substituted in a differential flux measured with Bonner Sphere balls measured by the Japanese and a response function extended to high energy based on 100 and 200 MeV measurements at iThemba (got factor of 2)

