The preliminary results of the Proton-ICCHIBAN-2 experiments for luminescence detectors

Yukio Uchihori¹, Nakahiro Yasuda¹, Eric Benton², Hisashi Kitamura¹, Satoshi Kodaira¹, Ondrej Ploc^{1,5}, Thomas Berger³, Michael Hajek⁴, Iva Jadrnickova⁵ and ICCHIBAN Participants

(1) National Institute of Radiological Sciences, Chiba, Japan

(2) Oklahoma State University, Stillwater, USA

(3) German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
 (4) Institute of Atomic and Subatomic Physics, Technical University Vienna, Austria
 (5) Nuclear Physics Institute, Prague, Czech Republic

Contents

- ICCHIBAN Projects
- Proton ICCHIBAN 2 Experiments
- Instrumentation
 - NIRS-Cyclotron and Reference Field
 - Calibrations of Beam Monitoring Instruments
 - Characteristics of beams
- Proton ICCHIBAN 2
 - Participants and Detectors
 - Preliminary Results
- Summary

ICCHIBAN Project

(InterComparison for Cosmic-ray with Heavy Ion Beams At NIRS)

NASA-JSC, JAXA, IBMP, DLR, ... 13 countries, 21 institutes

- Determine the response of space radiation dosimeters to heavy ions of charge and energy similar to that found in the galactic cosmic radiation (GCR) spectrum.
- Compare response and sensitivity of various space radiation monitoring instruments. Aid in reconciling differences in measurements made by various radiation instruments during space flight.
- Establish and characterize a heavy ion "reference standard" against which space radiation instruments can be calibrated.

Proton ICCHIBAN 2

- To understand responses of luminescence detectors for Low LET components
 - Main objects: TLD, OSL, glass, etc.
 - To expose detectors with same conditions, the ICWG prepared "Standard Packages".
- NIRS Cyclotron (NIRS-930)
 - Construction of radiation field for low energy protons in NIRS Cyclotron
- Beam
 - proton 70 MeV (Jan.29th 2010)
 - Proton 40 MeV (Feb. 5th 2010)

Specification of the NIRS-Cyclotron

- Type: AVF Cyclotron
- Beams:
 - proton 5-80 MeV
 - deuteron 10-55 MeV
 - ³He 18-147 MeV
 - ⁴He 20-110 MeV
 - Heavy ions ...

- This cyclotron is used to produce radioisotopes for SPECT/PET mainly.
- It is usable for scientific experiments about one day per a week.
- Typical experiment time is from 11 am to 7 pm (8 hours).

Reference Radiation Field (C-8 course)

apiertvreUSS in Frascati

Beam Monitoring and Controlling

Calibration of the Beam Monitor

- Before a beam time, the beam monitor is calibrated by the "Standard Markus chamber" placed on the center of the radiation field using the beam.
- The standard Markus chamber was calibrated at the NIRS ⁶⁰Co facility.
- We followed HIMAC's method to establish the calibration protocol in the Cyclotron.

15th WRMISS in Calibration of the beam monitor

Traceability of Detectors in Japan

Characteristics of The Reference Field

Photo of the beam image using a luminescence plate. The beam was 10x10cm² size.

Modeling of the Radiation Field

 $())^{2}$

scat

Model of the radiation field using the scatter-wobbler method •Beam spot is scattered to Gaussian shape and rotating along circular or ellipsoidal path.

See, H.Tomura, et al., Jpn. J. Med. Phys. 18: 42-56.1998

$$\Phi(x, y) = A \oint e^{-\frac{(x - (X - x_0))^2 + (y - (Y - y_0))^2}{2\sigma^2}} ds(X, Y)$$

•Circular path with radius R

$$\Phi(x, y) = A' e^{-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2}} L_0\left(\frac{R\sqrt{(x-x_0)^2 + (y-y_0)^2}}{\sigma^2}\right)$$

Modified Bessel functions of 1st kind

•Ellipsoidal path with semi-major axis a and semi-minor axis b

$$\Phi(x, y) = \sum_{n=0}^{N} \left(A' e^{-\frac{(x-x_0 - a\cos(\theta_n))^2 + (y-y_0 - b\sin(\theta_n))^2}{2\sigma^2}} \Delta s(\theta_n) \right)$$
$$\Delta s(\theta_n) = \sqrt{(a\cos(\theta_{n+1}) - a\cos(\theta_n))^2 + (b\sin(\theta_{n+1}) - b\sin(\theta_n))^2}$$
$$N_{2010} \sum_{n=0}^{N} \sum_{n=0}^{N} \frac{1}{2\pi n} N$$

Measured by scintillators 1^{11}

Position Dependency of Exposed Dose (70 MeV proton)

a = 4.10076, b = 3.05004,201x/sep 0/414715, y = -0.0313771 15th WRMISS in Frascati

Position Dependency of Exposed Dose (40 MeV proton)

Error Assumption of Exposed Dose

Uncertainty of Dose

- Uncertainly of the standard Markus chamber > 1.5 %
- Statistic error of the conversion factor from the standard Markus chamber to the beam monitor > 0.2 %
- Leakage current and background ~ 0.1 mGy/min
 Position dependence
- Proton 70 MeV
 - Fitting Error ~2.0%
 - Position Dependency within 5x5cm2 ~2.9 %
- Proton 40 MeV
 - Fitting Error ~ 3.1%
 - Position Dependency within 5x5cm2 ~4.0%

2010/Sept./7

 — Real dose is about 6.7 % higher than the measured dose.

Energy Distribution

ToF Measurements for Proton 70MeV

We have measured the energy of the beam by means of ToF (Time of Flight)

Energy Estimation from ToF Measurements

Beam	Estimation by	Aluminum	Aluminum	Aluminum	
	ToF	1mm	2mm	5mm	
proton 30 MeV	26.7 ±0.7MeV (28.0MeV)	22.1 MeV (22.2 MeV*)			
proton 70 MeV	69.8±3.5 MeV	67.8 MeV	65.6 MeV	58.5 MeV	
	(68.4MeV)	(67.8 MeV*)	(65.8 MeV*)	(59.3 MeV*)	

Error shows statistic error as the standard deviation. Bracket values show calculated value from nominal energies. Values with asterisk(*) show estimated value from ToF estimation.

Proton ICCHIBAN 2

SS in Fra

List of Participants

1	Armenia	YPI (Yerevan Physics Institute, Yerevan)	
2	Austria	ATI (Atomic Institute of the Austrian Universities, Vienna)	
3	Belgium	SCK-CEN (Belgian Nuclear Research Center, Mol)	
4	Czech Rep.	NPI (Nuclear Physics Institute, Prague)	
5	Germany	DLR (German Aerospace Center, Cologne)	
6	Greece	AUT (Aristotle University of Thessaloniki)	
7	Hungary	KFKI AEKI (KFKI Atomic Energy Research Institute, Budapest)	
8	Japan	JAXA (Japan Aerospace Exploration Agency, Tsukuba)	
9	Japan	NIRS (National Institute of Radiological Sciences, Chiba)	
10	Poland	INP (Institute of Nuclear Physics, Krakow)	
11	Russia	IMBP (Institute of Biomedical Problems, Moscow)	
12	USA	Eril Research Inc. (Stilwater)	
13	USA	NASA-JSC (NASA Johnson Space Center, Houston)	
14	USA	Oklahoma State University (Stilwater)	

Package Type-A

Proton 70 MeV

0.926	0.957	0.972	0.977	0.979	0.980	0.978	0.969
0.980	1.000	1.003	1.000	0.998	1.000	1.005	1.006
1.012	1.022	1.016	1.006	1.000	1.003	1.014	1.023
1.027	1.031	1.019	1.005	0.997	1.001	1.014	1.029
1.029	1.032	1.020	1.005	0.997	1.000	1.013	1.028
1.017	1.026	1.018	1.007	1.000	1.002	1.012	1.022
0.988	1.007	1.008	1.003	0.999	1.000	1.004	1.005
0.938	0.968	0.980	0.983	0.982	0.982	0.979	0.970

Proton 40 MeV

1.114	1.119	1.114	1.107	1.103	1.104	1.11	1.117
1.12	1.112	1.095	1.08	1.072	1.074	1.085	1.102
1.116	1.096	1.07	1.047	1.036	1.038	1.054	1.079
1.108	1.08	1.047	1.019	1.005	1.008	1.027	1.058
1.103	1.071	1.034	1.004	0.989	0.992	1.013	1.046
1.104	1.072	1.036	1.006	0.991	0.994	1.015	1.048
1.11	1.083	1.051	1.025	1.011	1.014	1.033	1.062
1.117	1.1	1.076	1.055	1.044	1.046	1.061	1.084

Type C

	Proton 70 MeV	Proton 40 MeV
1	1.008	1.089
2	1.007	1.064
3	1.029	1.076
4	1.002	0.997
5	1.013	1.015
6	0.990	1.093
7	0.996	1.029
8	0.996	1.043

Exposure list

- Proton 70 MeV
 - 1mGy, 10 mGy, 50 mGy, 100 mGy
 - 50 mGy with 5 mmt aluminum
- Proton 40 MeV
 - 1mGy, 10 mGy, 50 mGu, 100 mGy
 - 50 mGy with 3 mmt Alminum
- Blind
 - #1 70 mGy Proton 70 MeV
 - #2 50 mGy ⁴He 2.2keV/u
 - Extra #3 52 mGy ^{12}C 11 keV/ μm ,
 - Extra #4 200 mGy Proton 40 MeV, 20 mGy ¹²C 11 keV/μm, 10 mGy ²⁸Si 55 keV/μm

Proton 70 MeV, Nominal Dose 100mGy

2010/Sept./7

Detector ID 15th WRMISS in Frascati

Proton 40 MeV, Nominal Dose 100mGy

2010/Sept./7

Detector ID 15th WRMISS in Frascati

Detector ID

Proton 70 MeV, Nominal Dose 50mGy

Proton 70 MeV, Nominal Dose 1 mGy

2010/Sept./7

Conclusion

- In order to intercompare and calibrate luminescence detectors for space radiation dosimetry, Proton-ICCHIBAN-2 has been started.
- We have developed new radiation field for high energy (from 10 to 80 MeV) proton beams in the cyclotron facility in NIRS. The radiation field is useful for not only physics experiments but also biology experiments.
- The 1st series of the P-IC-2 was performed in 2010 and preliminary results were obtained.
- To compare the same type of detectors, they have good agreement within uncertainly.
- We will continue other series of P-IC-2 using other energy proton beams (30, 80 and ...) and light ion beams (Alpha, D, Carbon and etc.) in near future. The first candidate is a beam time at the NIRS-Cyclotron on Feb. 2011.

Acknowledgement

- Staffs of the NIRS-Cyclotron for their efforts to provide excellent beams.
- Members of the Quality Control Section in HIMAC for advices of calibrations.

Heavy Ion Symposium 2011 Chiba

(Heavy Ion Therapy and Space Radiation Symposium 2011, HITSRS2011)

The 6th International Workshop for Space Radiation Research (IWSRR) The 14th Workshop on Ion Beam in Biology and Medicine (IBIBAM) The 22nd Annual NASA Space Radiation Health Investigators' Workshop (SRHIW)

The 2nd ESA Space Radiation Investigators' Meeting (ESRAD)

Organized by the Japanese Association of Space Radiation Research and IWSRR2011 Committee

> May 26th – 31st, 2011 Keiyo Bank Culture Plaza, Chiba, Japan

https://sites.google.com/site/hitsrs2010