Dosimetry and LET spectrometry in He 150MeV/n (MONO) and C 290MeV/n (SOBP) ion beams - first results obtained by different detectors

F. Spurný¹⁾, K. Brabcová¹⁾, I. Jadrníčková¹⁾, O. Ploc¹⁾, Z. Mrázová¹⁾, Y. Uchihori²⁾, S. Kodaira²⁾, H.Kitamura²⁾, N. Yasuda²⁾

¹⁾ Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Na Truhlarce 39/64, Prague, <u>spurny@ujf.cas.cz</u>

²⁾ National Institute of Radiological Science, Anagawa 4-9-1, Chiba, Japan

Table of content

- HIMAC program of NPI ASCR
- Irradiation performed during the 2nd run January 2009:
- ≻He-ions 150 MeV/n MONO
- ≻C-ions 290 MeV/n SOBP
- Analysis of obtained results (preliminary)

HIMAC program of NPI ASCR

 Basic idea – to start to build LET spectra library for radiobiology experiments in HIMAC ion beams – approved by HIMAC PAC – beginning 2008,

• Methods used:

✓ Experimental:

- LET spectrometers based on TED (CR-39) above ~ 10 keV/µm
- Tissue equivalent proportional counter HAWK all LET
- MDU-Liulin energy deposition spectrometer up to ~ 30 keV/ µm
- Thermoluminescent detectors (TLDs) supplementary information for "low" LET region
- ✓ Calculation has partially started PHITS,MCNPX?

Passive detectors holders

• TLD

- CaSO₄:Dy (4 in each holder)
- Al_2O_3 :C (4 in each holder)
- TED (selection will follow)
 - Page
 - HARZLAS TD-1
 - USF-4
 - Baryotrak
 - Tastrak 0.5 mm
 - (Tastrak 1 mm)

MDU-LIULIN Si-energy deposition spectrometer

HAWK Tissue equivalent proportional counter

He 150 MONO Irradiation conditions - overview

BF	Depth, mm	TLD+TED	Liulin, intensity, full time	TEPC, intensity, full time
1	0	5*10^6	130 p/cm ² , 10 min	50 p/cm ² , 10 min
2	57.87	4.96*10^6		
3	88.91	5*10^6	130 p/cm ² , 10 min	50 p/cm ² , 10 min
5	127.68	4.93*10^6		
6	135.20	10^5	130 p/cm ² , 10 min	
9	143.16	10^5	130 p/cm ² , 10 min	
12	145.61	10^5	130 p/cm ² , 10 min	50 p/cm ² , 10 min
14	146.78	10^5	130 p/cm ² , 10 min	
16	147.92	10^5	130 p/cm ² , 10 min	50 p/cm ² , 10 min

Depth dose dependence H 150 MONO beam

TLD depth dependence – He 150 MONO

Remarks: TLD: BF 1-1 to 5 -5E 06; after – 5E 5;

He 150 MeV MONO – tracks from secondaries to primaries

BF 88.91 mm

BF 143.16 mm

BF 145.61 mm

LET spectra (Page) - He 150 MONO

secondary particles

mostly primary He ions

Liulin E_{dep} spectra - He 150 MONO

Remarks: BF1 – 2.2keV/µm; BF3 – 3.6keV/µm; BF5 - 4.9keV/µm

Liulin's comparison He 150 MONO(1)

LET spectra – He 150 MONO comparison TED and Liulin

Depth dose comparison – He 150 MONO

TLD – average from all 4 detectors

C 290 SOBP

Irradiation conditions - overview

BF	BFdepth,mm	TLD+TED,cm ⁻²	Liulin	TEPC
1	0	10^5 (97500)*	130 p/cm ² , 10 min	50 p/cm ² , 10 min
2	48.13	10^5 (97500)	130 p/cm ² , 10 min	
3	71.36	10^5 (97500)		50 p/cm ² , 10 min
5	85.83	10^5 (97500)	130 p/cm ² , 10 min	
7	86.97	10^5 (97500)		
9	117.24	10^5 (97500)	130 p/cm ² , 10 min	
10	136.34	10^5 (97500)		50 p/cm ² , 10 min
12	146.78	10^5 (97500)		
14	147.92	10^5 (97500)	130 p/cm ² , 10 min	50 p/cm ² , 10 min
16	152.46	10^5 (97500)	130 p/cm ² , 10 min	

Depth dose dependence C290 SOBP beam

TLD depth dependence – C 290 SOBP

Remarks: TLD: all BF ~1E 06cm⁻²

LET spectra (Page) - C 290 SOBP

Liulin Edep spectra - C 290 SOBP

LET spectra – C 290 SOBP comparison TED and Liulin

Depth dose comparison – C 290 SOBP

TLD – average from all 4 detectors

Further expected studies

- 1. May 2009(done):
- Ne 400 MeV/amu SOBP;
- Fe 500 MeV/amu MONO;
- TED and TLD's depths all as in previous studies (holders modified);
- Liulin 3 exposures 30.5; 59.64; 113.65 mm of PMMA;
- HAWK 5 exposures 30.5; 59.64; 68.91; 71.6; 73.1 mm of PMMA;
- 2. Next run (beginning of 2010):
- He 150 MeV/n SOBP;
- C 135 MeV/n SOBP

Acknowledgements

- Many of results presented in this contribution were obtained by using the results of ICCHIBAN research project using heavy lons at HIMAC-NIRS, NSRL–BNL, nuclotron JINR Dubna. We are much obliged to the staff of all laboratoriesm, and to organizers of runs, J. Miller, E.R. Benton, and V.P. Bamblevski[†] for their help.
- MDU-Liuln equipment was manufactured at STIL BAS Sofia in the team of Ts. Dachev. We are grateful to them for continuous support during the test and use of equipment.
- To our NPI colleagues ensuring the evaluation and basic interpretation of detectors readings
- Studies were supported through the NPI project P20241 agreed by HIMAC PAC at February 2008
- Studies were also partially supported through the grant No. 202/04/0795 of the GA CR and the IRP AV0Z10480505