
1

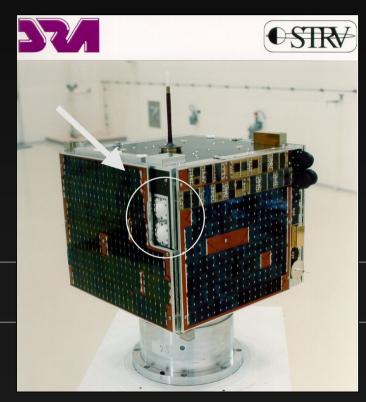
ESA's Space Radiation

and Plasma Monitoring Programmes

P. Nieminen, E. Daly, A. Mohammadzadeh, A. Hilgers ESA/ESTEC, The Netherlands

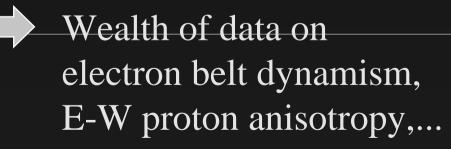
P. Bühler, W. Hajdas — PSI, Switzerland —

4 November 1999

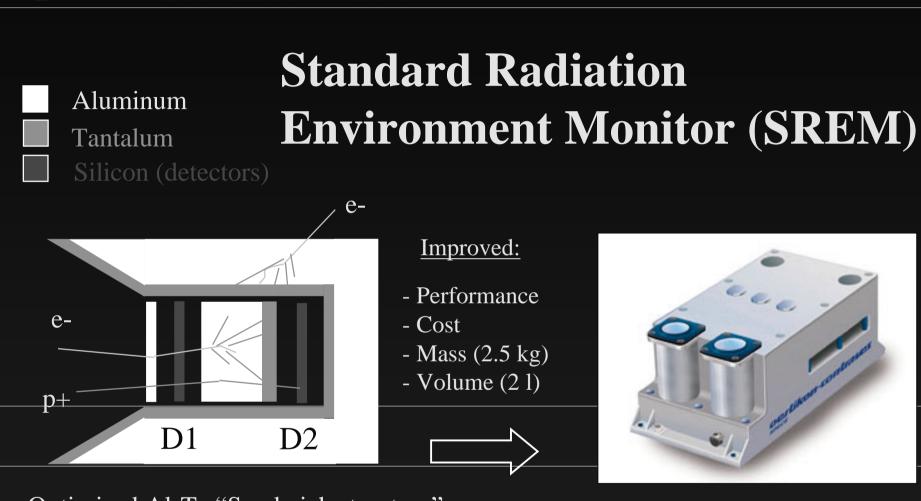


Space Radiation and Plasma Monitoring: Rationale

- Effects of the space radiation and plasma environment are varied and complex: instrument "background", component & material degradation, SEP, spacecraft anomalies, ...
- New technologies \rightarrow new problem areas
- Modelling: Need for <u>continuous</u> measurements with adequate spatial, energy and particle species coverage


esa

Radiation Environment Monitor (REM)



Two units:

- STRV-1b microsatellite (1994 - 98)
- MIR space station (1994 - 96)

STRV-1b

Optimised Al-Ta "Sandwich structure". Simulation outcome: modularity (D3). Further electronics miniaturisation underway.

- Electrons > 0.5 MeV

- Protons > 10 MeV
- Heavy ions qualitatively

· eesa

SREM

energy binning

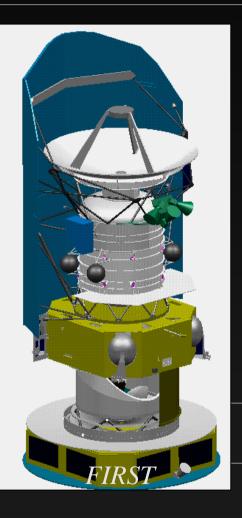
ESA Space Environment & **Effects Analysis Section**

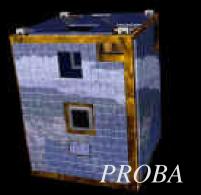
		Logic	dE discr. level [MeV]	Particle	Emin [MeV]	Emax [MeV]
	1.	D 1	0.085	Proton Electron	20 1.0	Inf.
	2.	D 1	0.25	Proton	20	550
	3.	D 1	0.6	Proton	20	120
	4.	D 1	2	Proton	20	27
	5.	D 1	30	Proton	20	34
	6.	D 2	0.085	Proton	39	Inf.
	7.	D 2	9	Ions	Depending on Z	Depending on Z
	8.	D1*D2	0.6, 2	Proton coincidence	40	50
	9.	D1*D2	0.6, 1.1-2.0	Proton coincidence	50	70
	10.	D 1 * D 2	0.6, 0.6-1.1	Proton coincidence	70	120
	11.	D 1 * D 2	0.085-0.6, 0.085- 0.6	Proton coincidence	130	Inf.
	12.	D 3	0.085	Electron Proton	0.5 10	Inf.
	13.	D 3	0.25	Electron	0.55	2.3
	14.	D 3	0.75	Proton	11	90
	15.	D 3	2	Proton	11	30

D1-D2 proton coincidence

4 November 1999

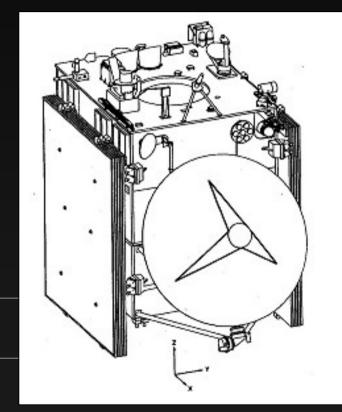
First mission: <u>STRV-1c</u>

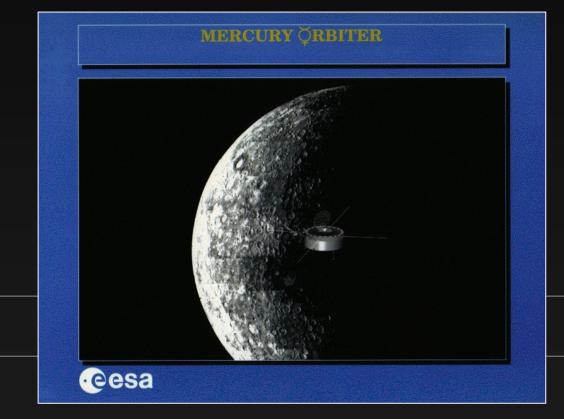

Pictures courtesy of DERA Farnborough



Missions with SREM...

4 November 1999




WRMISS Workshop

....contd....

Missions with SREM...

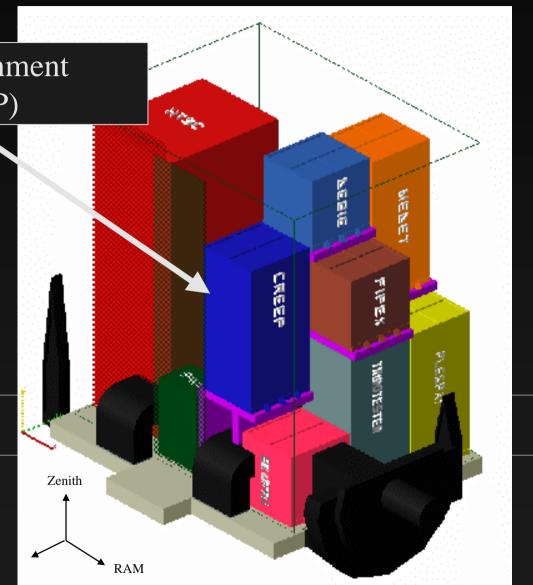
Rosetta

Mercury Orbiter

ESA Space Environment & **Effects Analysis Section Columbus Radiation Environment** and Effects Package (CREEP) in TEF

SREM PAUL SCHERRER INSTITUT DOSE DEPTH MONITOR Dose-Depth Monito STRV1-C Proton Monitor Thomson Nielsen CREAX **SPICA** es ONERA • **06**\$2 CENTRE MATIONAL D'ETUDES SPATIALE

4 November 1999


·eese

· eesa

ESA Space Environment & Effects Analysis Section

Columbus Radiation Environment and Effects Package (CREEP)

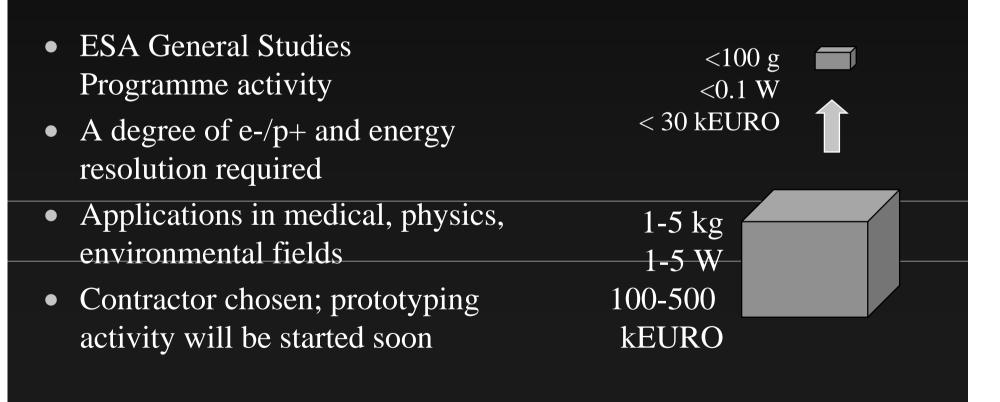
- Unobstructed view to RAM, zenith and a direction perpendicular to these
- Component Technology Test-Bed (CTTB) for memory devices, opto-couplers, comparators,...
- Launch late 2002, mission duration ~3 years.
- Simulations; Geant 4

Under Study...

Charged Particle Telescope (CPT)

- High-fidelity "science" instrument
- Good spatial, temporal and energy resolution
- In-orbit co-ordination facility for SREMs and potentially other monitoring devices
- Phase-A Study by Aboa Space Research, Inc. (ERNE instrument onboard SOHO; AMS collaborators) due to start by end of -99.
- Geant 4 to be used for simulations.

Under Study...


Plasma Environment Monitor (PEM)

- Low weight, low power plasma monitor
- Electrons, ions < 100 keV (spacecraft anomalies due to charging; instrumental background in X-ray detectors).
- This low-energy energy range is not covered by current monitor-type devices
- Space weather effects predictions, spacecraft anomaly analysis, plasma science instruments calibration

Under Study...

Miniature Radiation Monitor (MRM)

Conclusions

- ESA has a wide range of on-going radiation and plasma monitoring activities
- Needs of the ISS, science missions, commercial satellites, technology demonstration payloads addressed
- Connection to data and modelling efforts important
- Potential applications in other fields
- Comments, requirements, feedback from space radiation community welcome
- Collaboration, data sharing