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Annual Dose Equivalent 
Behind 5 g/cm2 of Aluminum

(1977 Solar Minimum)
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LET vs. Range
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Critical Questions
Related to Space Dosimetry 

• Space Radiation Environment
– For a given mission, what are the fluxes of GCR in interplanetary space as a

function of particle energy, LET, and solar cycle?
– What is the solar cycle dependence of space radiation?
– What is the trapped radiation flux as a function of time, magnetic field

coordinates and geographical coordinates?
– What are the doses related to heavy ions in deep space?

• Nuclear Interactions
– What are the yields for nuclear interactions of HZE particles in tissue and space

shielding materials?
– How are radiation fields transformed as a function of depth in different space

materials?
– What are the optimal ways of shielding humans in space?

• Atomic Interactions
– What is the precise energy deposition of heavy ions?
– What are the yields and energy spectra of electrons?

• Human Radiation Protection
– What should be the radiation dose limits for manned deep space missions?
– What is the risk associated with each crew member at any time during a given

mission?
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Radiation Protection Model
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Risk Prediction Model

Current

γ-rays  
A-bomb survivors   Quality Factor (LET) cancer, 

neutrons   (ICRP 60,1990) genetic effects
acute effects

Low-LET radiobiology     D, DREF, (LET), risk
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                        BEIR V)

PPA, LBL, BNL (USA) ϕ(A,Z,Ω,m,B, …) RBE cancer, CNS,
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Space radiation environment   shielding, risk
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Space radiation environment
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Risk Issues Related to Space Dosimetry

What is risk?
• a priori vs. a posteriori probabilities
• probability of defined effect (e.g., excess leukemia)
• architecture-dependent (trip duration, spacecraft, EVA's, etc.)

Prospective risk assessment:
• radiation monitoring

–  identify radiation in sufficient detail to understand results, i.e.,
spectral information may be required in addition to ionization
chambers; area monitors to define radiation field

• risk assessment vs. risk estimate
• architecture issues

Archival risk assessment:
• legal

– evidence of causation (or lack of causation) of an effect by exposure
to space radiation

• medical history
– acute effects: treatment, record
– late effects: how?

• epidemiological
– evaluate effects of cumulative population exposures
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Detector Considerations

Accuracy
Signal-to-noise ratio
Calibration, pre-experiment testing
Detection artifacts
Timing and location

Precision
Sensitivity adequate for statistically significant results
Geometry factors and acceptance

Dynamic range
Spectrum of particles and energies
Spectrum of LET
Doses, dose rates and flux

Data acquisition
On-line vs. off-line
Stability of data, especially for integrating detectors
Availability of records
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(*) R.H. Thomas,Passive Detectors. In: Advances in Radiation Protection and Dosimetry
In Medicine (R.H. Thomas and V. Perez-Mendez, Eds.) Plenum Press, New York, 1980, p. 218 

TLD Efficiency(*)
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Separating Species
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• Ions with differing M, Z, and E can
have similar dE/dx over a
substantial portion of their paths.

• Need good energy calibration (< 3%
or so) and information from many
detectors.

• Measure efficiencies of triggers
• Using these efficiencies, apply

corrections.
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Radial Energy Deposition
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Biodosimetry

• Biological monitoring of radiation exposure:
– record accumulated radiation exposure for individuals
– supplement area monitors
– weigh components of environmental radiation according to

their biological efficacy
– desired goal: predict risk

• Different types:
– intrinsic biological dosimeters: biomarkers for genetic or

metabolic changes
– extrinsic biological dosimeters/indicators for radiation and

other genotoxic substances and agents
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Biomarker Requirements

• sensitivity to the levels of radiation exposure of concern
– unequivocal: not sensitive to confounding factors (high signal-to-

noise ratio)
• accuracy of predictions

– predict risk and health care decisions at a well-defined level of
confidence

• specificity of prediction
– plausible causal relationship based on testable mechanisms of

radiation action, rather than just a contingent correlation with
radiation exposure

• precision: the results are not significantly distorted by individual or
circumstantial variations in radiation response

• lead to diagnostic procedures that are:
– practical under actual circumstances of exposure rather than

only under highly restricted laboratory conditions
– cost-effective , to screen large populations where required
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Single Instrument Specifications
ϕ(A,Z, LET,  … ), D(LET), QF(LET), …

• Particle identification:
Positive charges vs. neutrons,

electrons, γ-rays
(1,1)  •   (A,Z)  •   (56,26) [p to Fe]
∆Z/Z  •   0.2]
∆A/A  •   1

• Energies:
10  •   εHZE  •   1000 MeV/nucleon
10 keV  •   εn  •   100 MeV
700 keV  •   εx,γ,β  •   10 MeV

• LET range:
0.1  •   LET  •   2000 keV/µm

• Acceptance
– Solid angle (statistics)  •   2•
– detection efficiency •  10%
–  ∆ø/ø (angular resolution)  •   3°

• Rate Dependence
R  •   105 particles/sec; N  •   104

particles/cm2

0.01 µGy/min  •   • D/• t  •   1 Gy/min
• Localization

– Portability
» Personnel dosimetry
» Area monitoring

– Shielding: traceable to mass distributions
• Data acquisition and recording

– Telemetry and on-board readout
– Coincidence and correlation w/other

instruments
– Autonomy > 90 days
– Availability and distribution < 30 days
– Stability: 50 yrs
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When is a dosimeter not a dosimeter?

• Not every measurement is ISS dosimetry
– Have the instruments been calibrated at a recognized facility?

» How accurately does the calibration site simulate the component of space
radiation for which the instrument is designed?

– Can the results of the measurement be interpreted in terms of other
measurements?

» Has an intercomparison been performed with other dosimetry instruments?
» Have previous flight data been published in refereed journals?

• Not every ISS dosimetry measurement will necessarily  be used for implementing
ALARA

– Are the data available during the mission?
» Are they available in real time?
» Are they available to the crew in flight?
» Is privacy of individual data safeguarded?
» Is there a protocol for use by mission operations?

– Are the data available after the mission?
» Is there a protocol for incorporation into medical records?
» Is there a protocol for interpretation of the data in terms of crew member

radiation history?
» Can the data be interpreted in terms of crew member risk?
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Ground Research:
Simulate Space Radiation

Determine Biological Factors of Risk
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