Development of the Battery-operated Independent Radiation Detector (BIRD)

<u>A. A. Bahadori</u>, M. Kroupa, T. Sweet, R. Moore, M. Gruseck, J. Idarraga, S. Wheeler, R. Hagen, A. Alvarez-Hernandez, S. Hoang, N. Stoffle, L. Pinsky, C. Amberboy, R. Gaza, E. J. Semones 9-11 September 2014 19th Workshop on Radiation Monitoring for the International Space Station (WRMISS)

HOUSTON

Acknowledgements

- Advanced Exploration Systems RadWorks
 - Program integration
 - Resources
- Medipix Collaboration
 - Technology
 - Facilities

Outline

- Introduction
- BIRD Aims
 - Design
 - Data Acquisition
 - Flight Hardware Experience
- Concept of Operations
- Conclusion

Timepix detection at NASA

- ISS Radiation Environment Monitor (REM)
 - Technology demonstration
 - USB communication with laptop
- BIRD
 - Will fly on Orion MPCV in December 2014
 - Independent of vehicle systems
- Hybrid Electronic Radiation Assessor (HERA)
 - Integrated system
 - Distributed monitoring

• ISS REM

• ISS REM

Generated using WebREM (D. Turecek)

BIRD
Exploration Flight Test 1
Payload
No data or power
Develop in < 2 y

Credit: NASA

EXPLORATION FLIGHT TEST ONE

OVERVIEW

TWO ORBITS () 20,000 MPH ENTRY () 3,671 MILE APOGEE () 28.6 DEGREE INCLINATION

EXPLORATION FLIGHT TEST ONE GROUND TRACK

Credit: NASA

BIRD Aim 1

Design

- Timepix communication and control

Hardware

Architecture

Hardware

• Carrier board

- Connection for Timepix assembly
- Allows interchangeability
- Processor board
 - Low level voltage conversion
 - Timepix operations
 - Configure
 - Read data
 - Save data
- Power supply board
 - Dynamic battery voltage input
 - Constant 3.3 VDC output
- External interface/testing board

Flight SW Functions

 USB interface to the GSE SW - Calibration – Pre-flight functions Check for a launch – Wake from sleep - Return to sleep if no launch Launch detection Acquire Timepix frames – Write to memory

Ground SW Functions

- Initialize flash memory on the BIRD – BIRD FSW
 - Timepix initialization matrix
 - Timepix DAC settings
- Memory functions
 - Initialize the uSD file
 - Read/store the uSD format
- Correct card format in case of errors

GSE SW

--- USB communication for Bird ---F01-W0211

- - X

RAM

Cover Fasteners

Power Supply

Clamp Fasteners

Battery

•

Processor Board

RAM Bracket Covers

9.8" long x 5.1" wide x 3.0" tall ~3.1 lbs

Vehicle Attachment

4.2"

Copper bonding strip positioned to contact an alodined surface

Thermal Math Model

- 37 °C for air and CIAS
- 74 °C Timepix (steady-state)

BIRD Aim 2

Exploration Mission Monitoring

Active with low power Characterize Low mass space and volume radiation

Data Products

- BIRD Data Stored
 - ToT counts
 - Date-time
 - Duration
 - Acceleration
 - Temperature
- Ground Software Products
 - Absorbed dose
 - Angle and dE/dx
 - Dose equivalent
- Z & E identification/binning

Radiation Testing Opportunities

• April 2013

- $-\,500\,AMeV$ and 1 AGeV ^{56}Fe
- $-\,300$ and 600 AMeV $^{12}\mathrm{C}$
- May 2013
 - 300 and 400 AMeV 4 He
 - -50 and 300 AMeV $^1\mathrm{H}$
- June 2014
 - Flight unit testing
 - Rates matched to AP9 predictions

April 2013 NSRL Summary

 Single event upsets Iron and Carbon - Very high fluence rates Upsets from 1 AGeV ⁵⁶Fe Required power cycling - Large local energy depositions Upsets from 600 AMeV ¹²C Watchdog timer recovered LET estimates improved by data processing algorithms

May 2013 NSRL Summary

- BIRD EU2 in GSE mode
 - Energetic alpha particle data for algorithm development
- BIRD EU2 operation tested
 - Low- and moderate-energy
 - Rates far exceeding the AP9-predicted max integral flux (>20 MeV)
- No SEUs were observed
- Tests indicate BIRD will operate in the predicted environment

June 2014 NSRL Testing

June 2014 NSRL Testing

June 2014 NSRL Summary

- No SEU in primary beam
- High occupancy for frames near local maxima
- Usable dosimetry data will still be acquired

BIRD Aim 3

• Flight Hardware Experience

– NASA processes

Ο

- Lessons for future designs

ISS REM

HER

BIRD

EMI Testing

- Radiated Emissions (RE102) was performed on flight unit 2 (SN 1002)
 - 2 MHz 18 GHz electrical field
- Installed on vibration test fixture
 - Mimic same clamping mechanism and bonding as the vehicle
 - Bond measured to be < 2.5 mohms
- Passed, no exceedances noted

Background (baseline)

BIRD radiated

Vibration Testing

Thermal Testing

BIRD Thermal Acceptance Test Profile

Thermal Testing

Lessons Learned

- Main fuse
 - Short from mate/de-mate
 - Replaced with slow blow fuse

- Battery wires
 - Pinched between connector and cover
 - Replaced battery assembly
 - Staked wires

Concept of Operations

- Functional check
- Enter sleep mode
- Pre-flight Install in Orion MPCV
 - Begin data acquisition upon launch
 - Terminate once voltage drops below threshold
 - Graceful shutdown
 - De-install from Orion MPCV
 - Transfer data from BIRD
 - Analyze and distribute data

Post-flight

Flight

Conclusion

- BIRD development completed
- Experience gained
 - Timepix communication and control
 - Data acquisition
 - Flight hardware
- Final test is December 2014 (EFT-1)
 - Anticipate a successful flight
 - Excited to analyze unique data

References

- Medipix Collaboration, http://medipix.web.cern.ch/medipix
- Pinsky L. S. and Chancellor J. (2007)
- Pinsky L. S. et al. (2012) 2012 IEEE Aerospace Conference
- Turecek D. et al. (2011) *JINST*, 6, C12037
- Vykydal Z. and Jakubek J. (2010) *Nucl. Instr. Meth. A* 633 S48
- Hoang S. et al. (2012) CHEP 2012
- NASA Orion MPCV EFT-1, http://www.nasa.gov/exploration/systems/mpcv/test_fli ght_2014.html

Backup Slides

Timepix chip

Single energy threshold
55 µm pixels
256 x 256 pixels
Active area ~2 cm²
Silicon detection element

L. Pinsky and J. Chancellor *IEEE* (2007)

J. Jakubek *Nucl. Inst. Meth. A* 633 (2011)

Verification

Flight Unit 1

F10-W0212

Flight Unit

¢Vol 1 Vol 2

Vol 3

Vol 4

April 2013 NSRL - Iron

•500 AMeV and 1 AGeV ⁵⁶Fe
•Incidence angles of 30° and 60°
•Both GSE and Flight Modes
•Utilized External Power

Hardware Setup

Irradiation Profile

April 2013 NSRL Run

Corrected Angle Histogram

Correction applied to account for saturation and 'volcano' effects inherent to the Timepix hardware. Such corrections are applied as a post-processing step and enhancements to these algorithms are in development

Saturation Effects

Saturation Effects

- Non-linear region in the calibration curve for ToT value to Energy above around 800 KeV in a single pixel
- Results in an overestimation of energy relative to actual deposition

Volcano Effects

Volcano Effects

- Charge collection in cluster center is much lower than the physically expected value
- Result of carrier recombination and pixel-electronics protection circuits

April 2013 NSRL - Carbon

•300 and 600 AMeV ¹²C
•Incidence angles of 30° and 60°
•Both GSE and Flight Modes
•Utilized External Power

Hardware Setup

Irradiation Profile

April 2013 NSRL Run Corrected Angle Histogran bon Beamected LET Histogram

Correction applied to account for saturation and 'volcano' effects inherent to the Timepix hardware. Such corrections are applied as a post-processing step and enhancements to these algorithms are in development

May 2013 NSRL - Helium

•300 and 400 AMeV ⁴He
•Incidence angles of 0°, 30°, 60°, and 85°
•Both GSE and Flight Modes
•Utilized External Power

Irradiation Profile Hardware Setup

Correction applied to account for saturation and 'volcano' effects inherent to the Timepix hardware. Such corrections are applied as a post-processing step and enhancements to these algorithms are in development

May 2013 NSRL - Proton

•50 and 300 AMeV ¹H
•Normal Incidence
•Both GSE and Flight Modes
•Utilized External Power
•Proton energy similar to that expected on EFT1

