Nuclear Track Etch Detector Evaluation Studies in the Frame of the DOSIS 3D Experiment – 19th WRMISS

Knowledge for Tomorrow

Bartos Przybyla, DOSIS 3D Team

Radiation Biology Department Institute of Aerospace Medicine German Aerospace Center 51147 Cologne Germany

Overview

- DOSIS 3D
- DLR System
- NIRS System
- System Comparison

• Summary

DOSIS 3D: Science Team

Berger Thomas¹, Burmeister Sönke², Bilski Pawel³, Horwacik Tomasz³, Twardak Anna³, Przybyla Bartos¹, Hajek Michael^{4,5}, Hofstätter Christina⁵, Palfalvi Jozsef⁶, Szabo Julianna⁶, Ambrozova Iva⁷, Vanhavere Filip⁸, Gaza Ramona^{9,15}, Semones Edward⁹, Yukihara Eduardo¹⁰, Benton Eric¹⁰, Labrenz Johannes², Uchihori Yukio¹¹, Kodaira Satoshi¹¹, Kitamura Hisashi¹¹, Shurshakov Vyacheslav¹², Tolochek Raisa¹², Nagamatsu Aiko¹³, Boehme Matthias¹⁴, Reitz Günther¹

¹ DLR	German Aerospace Center	Cologne, Germany
² CAU	Christian Albrechts Universität zu Kiel	Kiel, Germany
³ IFJ	Institute of Nuclear Physics	Krakow, Poland
⁴ IAEA	International Atomic Energy Agency	Vienna, Austria
⁵ATI	Technical University Vienna	Vienna, Austria
⁶ CER-HAS	Centre for Energy Research	Budapest, Hungary
⁷ NPI	Nuclear Physics Institute	Prague, Czech Republic
⁸ SCK-CEN	Belgian Nuclear Research Center	Mol, Belgium
⁹ NASA	Space Radiation Analysis Group	Houston, United States
¹⁰ OSU	Oklahoma State University	Stillwater, United States
¹¹ NIRS	National Institute of Radiological Sciences	Chiba, Japan
¹² IMBP	Russian Academy of Sciences	Moscow, Russia
¹³ JAXA	Japan Aerospace Exploration Agency	Tsukuba, Japan
¹⁴ OHB System AG		Bremen, Germany
¹⁵ Lockheed Martin Exploration & Mission Support		Houston, United States

DOSIS 3D: Columbus

DLR

DOSIS 3D: Scientific Goals

- Monitoring radiation environment inside Columbus
- Determination of temporal and spacial dose distributions
- Combining data from NASA, JAXA, IMBP and ESA

3D radiation map for the ISS

DOSIS 3D: Columbus PDP locations

DOSIS 3D: Triple Pack PDP 11

- Passive Detector Packages
 - Thermoluminescence (TLD)
 - Nuclear track etch (CR-39)
- Position 11: X-Y-Z array

- DOSIS 3D 1 Experiment
 - May 2012 to September 2012
 - Z-Detector

DOSIS 3D: Nuclear Track Etch Detector (CR39) Evaluation

Overview

- DOSIS 3D
- DLR System
- NIRS System
- System Comparison

• Summary

DLR System: Hardware Short Summary

- Transmitted light microscope (bright field)
- Automated X-Y-Z stage control
- Color CMOS camera
- Objectives (used) 100x/50x
- Micrometer to pixel ratio
 0.05um/px (100x)
 0.10um/px (50x)
- Semi-automated system

DLR System: Software Short Summary

- Manual track detection and selection
- Manual track measurement
- Semi-automated track evaluation

Overview

- DOSIS 3D
- DLR System
- NIRS System
- System Comparison

• Summary

NIRS System: Hardware Short Summary

- Reflected light microscope (bright field)
- Automated X-Y-Z stage control
- Line scan CMOS camera
- Objectives (used) 20x
- Micrometer to pixel ratio
 0.35um/px
- Fully automated system

NIRS System: Software Short Summary

- Automated track detection and selection
- Automated track measurement
- Semi-automated track evaluation

Overview

- DOSIS 3D
- DLR System
- NIRS System
- System Comparison

• Summary

System Comparison: DLR – NIRS

DLR

- Desired bulk removal
 - Short ~10um
 - Long ~50um
- Semi-automated system High user interaction
- Manual track detection and selection

DLR protocol already included in workflow

NIRS

- Desired bulk removal
 - Short ~16um
 - Long ~40um
- Fully-automated system Low user interaction
- Automated track detection and selection

NIRS protocol (manual exclusion of all overetched tracks)

System Comparison: DLR – NIRS short

DLR

NIRS

System Comparison: Ellipse Area Distribution – short (all tracks)

System Comparison: Ellipse Area Distribution – <u>short</u> (NIRS protocol)

System Comparison: DLR – NIRS long

DLR

NIRS

System Comparison: Ellipse Area Distribution – long (all tracks)

System Comparison: Track Density

System Comparison: Fluence Spectra - short (all tracks)

System Comparison: Fluence Spectra – short (NIRS protocol)

System Comparison: Fluence Spectra - long

System Comparison: D/H/Q (total LET)

Overview

- DOSIS 3D
- DLR System
- NIRS System
- System Comparison
- Summary

Summary: DLR – NIRS short (all tracks)

Summary: DLR – NIRS <u>short</u> (NIRS protocol)

Summary: DLR – NIRS long

Summary: DLR – NIRS

- Different um to pixel ratio
 - Shifts threshold for small and large track detection
- Fully automated track detection
 - Raises track density, dose values and fluence
 - "Agitates" spectrum

Summary: DLR – NIRS

- Different track sensitivity of each system
 - Highly dependend on bulk etch
 - Each system has ist own operational "sweet spot"
- Manual removal of overetched tracks and surface artefacts still necessary

Common guidlines for track classification

Acknowledgement

- Institute of Aerospace Medicine, German Aerospace Centre, Cologne, Germany
 - T. Berger
 - G. Reitz

- National Institute of Radiological Sciences, Chiba, Japan
 - S. Kodaira
 - H. Kitamura
 - Y. Uchihori

Thank you for your attention

Additional Charts

Knowledge for Tomorrow

Simulated Area-LET dependency short

Simulated Area-LET dependency long

Simulated Area-log(Vr-1) dependency short

Simulated Area-log(Vr-1) dependency long

Reduced etch ratio comparison short

Reduced etch ratio comparison short no overetched

Reduced etch ratio comparison long

DLR short + long

NIRS short + long

NIRS short no overetched + long

