

Neutron Measurements using Bubble Detectors: ISS-34 to ISS-40

WRMISS-19 September 9th – 11th 2014

WRMISS-19, September 9th – 11th 2014

Collaboration

M.B. Smith¹, S. Khulapko^{2,3}, H.R. Andrews¹, V. Arkhangelsky², H. Ing¹, M.R. Koslowsky¹, B.J. Lewis⁴, R. Machrafi⁴, I. Nikolaev³, V. Shurshakov²

 ¹Bubble Technology Industries, PO Box 100, Chalk River, Ontario, Canada KOJ 1J0
 ²State Scientific Centre, Institute for Biomedical Problems, Russian Academy of Sciences, 76A Khoroshevskoe sh., 123007 Moscow, Russia
 ³RSC-Energia, 4A Lenin str., 141070 Korolev, Moscow Region, Russia
 ⁴Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, Canada L1H 7K4

Introduction

- Radiation prediction, monitoring, and protection technologies are a key part of every space mission involving humans
- NASA's Bioastronautics Roadmap identifies provision of radiation protection as one of the high-priority health and medical issues for exploration-class missions
 - Radiation protection is listed as one of three key areas for lunar missions, and one of eight for Mars missions
- The risk to space crews due to radiation in deep space may be a serious obstacle to Mars missions
- Neutrons are of particular interest to radiation health and protection
 - Measurements indicate that neutrons may represent 30% of the biologicallyeffective radiation exposure in low-Earth orbit
 - A significant neutron contribution is also expected in deep space
- Bubble detectors have been used to monitor neutrons in space since 1989 on recoverable Russian Biocosmos (Bion) satellites, the Mir space station, the space shuttle, and the ISS

Bubble Detectors

- Bubble detectors are passive, realtime neutron dosimeters manufactured by Bubble Technology Industries
- They contain superheated liquid droplets dispersed in an elastic polymer
- Neutrons interact with the droplets to form bubbles
- The elastic polymer retains the bubbles to allow visible detection of neutron radiation
- After each measurement, the bubbles can be recompressed and the detector can be reused

NEUTRONS

Space Bubble Detectors

- Two types of space bubble detector are used to monitor neutrons on the ISS
 - Space personal neutron dosimeter (SPND)
 - Space bubble detector spectrometer (SBDS)
 - Set of six detectors, each with a different energy threshold
 - Data unfolding provides a coarse neutron energy spectrum (0.06 – 50 MeV)
- Space bubble detectors use a stronger polymer than terrestrial detectors
 - Allows bubbles to grow slowly during a week-long measurement
- Detectors are temperature compensated
- Bubbles are counted with the space mini reader located in the Russian segment

ISS-13 (2006) to ISS-19 (2009)

- Bubble detectors have been used on the ISS since ISS-13 as part of the international Matroshka-R experiment
- Early experiments used the spherical Matroshka-R phantom located in the Russian segment
- Phantom measurements using SPNDs indicated that the neutron dose inside the phantom was slightly less than that at its surface

R. Machrafi et al., Radiat. Prot. Dosimetry 133(4), 200 – 207 (2009) M.B. Smith et al., Radiat. Prot. Dosimetry 153(4), 509 – 533 (2013)

WRMISS-19, September 9th – 11th 2014

ISS-20/21 (2009)

- The SBDS was used for the first time during ISS-20/21
- Experiments were performed with an SBDS and two SPNDs in four modules
 - Russian Service Module
 - Columbus
 - US Lab
 - Japanese Experiment Module (JEM)
- This included the Radi-N experiment in the USOS modules
 - Goal of Radi-N was to compare the neutron dose and energy spectrum at different locations in the USOS

M.B. Smith et al., Radiat. Prot. Dosimetry 153(4), 509 – 533 (2013)

Photograph used with permission of Dr. Robert Thirsk

ISS-20 and ISS-21 (2009)

- Neutron energy spectra agreed well with previous measurements, and did not show a strong dependence on the location in the ISS
- Neutron dose received in the sleeping quarters (JEM) was less than that received during daily activities
- A water shield in the JEM reduced the neutron dose on the inner side of the shield to 72±17% of the value on the outer side
- Neutron dose equivalent was approximately 30% of the total recorded by the ISS TEPC
- Approximately 40% of the neutron dose measured was due to high-energy neutrons (> 15 MeV)

ISS-22 (2009) to ISS-33 (2012)

- 32 experimental sessions

 (approximately one week each) were
 performed during ISS-22 to ISS-33
- All measurements were conducted in the Russian segment
- A hydrogenous shield reduced the neutron dose on the cabin side of the shield to 77±17 % of the dose at an unshielded location
- It was shown that solar activity and ISS altitude did not seem to have a strong influence on the neutron dose or energy spectrum inside the ISS

M.B. Smith et al., Radiat. Prot. Dosimetry doi:10.1093/rpd/ncu053 (2014)

List of Sessions: ISS-34 to ISS-38

Session	Initialization date	Retrieval date	Location 1	Location 2
34/35-1	27 December 2012	3 January 2013	Columbus	Service Module
34/35-2	18 January 2013	25 January 2013	JEM	Service Module
34/35-3	11 February 2013	18 February 2013	US Lab	Service Module
34/35-4	5 March 2013	12 March 2013	Node 2	Service Module
35/36-1	3 April 2013	10 April 2013	Service Module	Service Module
35/36-2	1 May 2013	8 May 2013	MRM1	MRM1
35/36-3	30 May 2013	6 June 2013	US Lab	MRM1
35/36-4	27 June 2013	5 July 2013	US Lab	MRM1
35/36-5	12 July 2013	19 July 2013	MRM1	MRM1
35/36-6	25 July 2013	2 August 2013	JEM	MRM1
35/36-7	23 August 2013	30 August 2013	JEM	MRM1
37/38-1	16 September 2013	23 September 2013	MRM1	MRM1
37/38-2	15 October 2013	22 October 2013	MRM1	MRM1
37/38-3	15 November 2013	22 November 2013	US Lab	Service Module
37/38-4	11 December 2013	19 December 2013	Service Module	US Lab
37/38-5	9 January 2014	16 January 2014	Service Module	JEM
37/38-6	4 February 2014	11 February 2014	Service Module	JEM
37/38-7	26 February 2014	5 March 2014	MRM2	Columbus

ISS-34/35 (2012/2013)

- The Radi-N2 experiment started during ISS-34/35 with four sessions in the USOS
- The goal was to repeat the 2009 Radi-N experiments as closely as possible
- For the four sessions, an SBDS was placed in Columbus (1A3), the JEM (JPM1F3), the US Lab (1S4), and Node 2 (P3)
- Two SPNDs were used simultaneously with the SBDS measurements
 - One was placed in the astronaut's sleeping quarters (in Node 2) and one was worn on his body
- A second SBDS and two SPNDs were used for four sessions in the Russian Service Module at the same time as the Radi-N2 measurements

Canadian astronaut Chris Hadfield with bubble detectors, January 2013

ISS-34/35: Radi-N2 Energy Spectra

WRMISS-19, September 9th – 11th 2014

Radi-N2 (USOS)

Session	SBDS Dose Rate (µSv/day)	SPND A97 Dose Rate (µSv/day)	SPND A98 Dose Rate (µSv/day)
1	176 ⁺⁷⁹ -60	212±38	144±22
2	178 ⁺⁵⁹ -43	195±36	178±26
3	179 ⁺⁵⁷ -42	145±28	147±22
4	202 ⁺⁵⁵ -41	181±33	125±20

Russian Service Module

Session	SBDS Dose Rate (µSv/day)	SPND A07 Dose Rate (µSv/day)	SPND A08 Dose Rate (µSv/day)
1	144 ⁺⁷⁵ -58	151±22	149±24
2	228 ⁺⁴⁵ -19	150±22	153±25
3	126 ⁺⁵⁸ -41	148±22	132±22
4	154 ⁺⁴¹ -15	187±26	166±26

SPND A07 and A08 were co-located with the Russian SBDS

SBDS Dose Rate: Radi-N and Radi-N2

BUBBI

Technology Industries

BL

WRMISS-19, September 9th – 11th 2014

ISS-35/36 (2013)

- Radi-N2 continued during ISS-35/36
 - Two sessions in the US Lab
 - Two sessions in the JEM
 - SPNDs and the SBDS were co-located
- The ongoing goal of Radi-N2 is to collect ten weeks of data in each of the four USOS locations
- Ten week-long sessions were performed in the Russian segment
 - Included the first measurements using the SBDS in and around the spherical Matroshka-R phantom
 - Phantom was located in Mini
 Research Module 1 (MRM1)
- Phantom experiments also included the first two sessions of ISS-37

ISS-35/36: Phantom Surface (Sum)

ISS-35/36: Inside Phantom (Sum)

ISS-35/36: Phantom Data

- SBDS data suggest that the neutron dose in the phantom is 66% of the dose at the phantom surface
- SPND data suggest that the dose in the phantom is 73±17% of the surface dose
- The results agree well with earlier SPND results (ISS-13 to ISS-19)
- The energy spectrum inside the phantom appears to be different from that at the surface (and elsewhere in the ISS)
 - Data suggest that neutrons inside the phantom are of higher energy than those outside the phantom
 - The phantom may attenuate low-energy neutrons, while secondary neutrons are created in the phantom

Summed SPND phantom data

Phantom: Monte-Carlo Simulations

- Interactions in the phantom were investigated using Geant4 Monte-Carlo simulations
 - Inputs from Armstrong and CREME
 - Results suggest that most neutrons inside the phantom are due to neutron scattering
 - Protons and alpha particles also create neutrons
- Geant4 neutron dose in the phantom is 58% of that at the surface
 - Good agreement with the dose-rate reduction measured by the SBDS (66%) and SPNDs (73±17%)

T.W. Armstrong and B.L. Colborn., Radiat. Meas. 33(3), 229 – 234 (2001)

vere onte-CREME eutrons to also hantom

ISS-37/38 (2013/2014)

- Five Radi-N2 sessions were performed during ISS-37/38
 - Two sessions in the US Lab
 - Two sessions in the JEM
 - One session in Columbus
- By the end of ISS-37/38, six weeks of data had been collected in the JEM and the US Lab
- A further nine measurements were performed in the Russian segment
 - Four in MRM1 (as part of the phantom experiments)
 - Four in the Service Module
 - One in MRM2

Radi-N2 (USOS)

Session	SBDS Dose Rate (µSv/day)	SPND 1 Dose Rate (µSv/day)	SPND 2 Dose Rate (µSv/day)
3	144^{+75}_{-58}	128±25	169±25
4	159 ⁺⁵³ -38	150±25	154±23
5	112 ⁺⁶⁵ 28	117±21	137±21
6	118 ⁺⁵⁸ -30	159±27	184±27
7	112 ⁺⁶⁷ -39	165±27	103±17

Russian Segment

Session	SBDS Dose Rate (µSv/day)	SPND 1 Dose Rate (µSv/day)	SPND 2 Dose Rate (µSv/day)
3	176 ⁺⁴¹ -16	144±21	160±26
4	154 ⁺³⁹ 154	103±16	132±20
5	151 ⁺³⁹	138±19	127±20
6	179 ⁺⁴² 179	141±20	143±22
7	106 ⁺⁵⁴ -35	106±16	114±18

SBDS: JEM and US Lab

 The SPND and SBDS results from Radi-N and Radi-N2 are similar

Radi-N2: Influence Quantities

- The increase in solar activity between 2009 and 2013 did not seem to have a strong influence on the neutron dose
- Similarly, the neutron dose seems unaffected by the increased ISS altitude
- These observations agree with results from the Russian segment (ISS-22 to ISS-33)
- Influences on neutron dose may not be observable for two reasons
 - The effects of solar activity and ISS altitude tend to cancel each other
 - Recent solar maximum was weak

ISS-39/40

- 14 sessions were conducted during the ISS-39/40 mission
- Six measurements for Radi-N2
 - Three sessions in Columbus and three in Node 2
- Eight measurements in the Russian segment
 - Shielding experiment in the Service Module using two sets of detectors
 - Six sessions in MRM2

Session	Initialization date	Retrieval date	Location 1	Location 2
39/40-1	21 March 2014	28 March 2014	Service Module	Service Module
39/40-2	14 April 2014	21 April 2014	Columbus	MRM2
39/40-3	12 May 2014	19 May 2014	Columbus	MRM2
39/40-4	10 June 2014	17 June 2014	Columbus	MRM2
39/40-5	7 July 2014	14 July 2014	Node 2	MRM2
39/40-6	4 August 2014	11 August 2014	Node 2	MRM2
39/40-7	3 September 2014	9 September 2014	Node 2	MRM2

ISS-41/42

- A further 12 sessions are planned for ISS-41/42 (October 2014 March 2015)
- Measurements for Radi-N2 will restart in the US Lab
- Experiments in the Russian segment will include
 - Further measurements in the Matroshka-R phantom
 - Investigation of shielding in the Russian sleeping quarters using two SPNDs

Summary: ISS-34 to ISS-40

- Data were collected for Radi-N2 and Matroshka-R during ISS-34 to ISS-40
- Radi-N2 aims to collect ten weeks of data in each of four USOS locations
 - By the end of ISS-40, six sessions had been collected in Columbus, the JEM, and the US laboratory, and four sessions had been conducted in Node 2
 - Results so far demonstrate good consistency for each location and agree well with previous measurements
 - Variations in potential influence quantities such as solar activity and ISS altitude seem to have little effect on the neutron dose
- In the Russian segment, measurements included the first characterization of the energy spectrum inside the Matroshka-R phantom
 - Data suggest that the neutron dose inside the phantom is approximately 70% of the dose at its surface
 - The energy spectrum in the phantom contains a higher proportion of high-energy neutrons than the spectrum outside the phantom
 - Matroshka-R measurements were extended to MRM1 and MRM2
- Radi-N2 and Matroshka-R experiments will continue into ISS-41/42 and beyond

Acknowledgements

- We would like to thank the following for their important contributions
 - The astronauts and cosmonauts who performed the measurements
 - NASA's Space Radiation Analysis Group (SRAG) for supporting the experiments
 - The Canadian Space Agency and the Russian Space Agency for funding the work

