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ISS-RAD = MSL-RAD + FND

» Add Fast Neutron Detector (FND) to RAD.
Measure neutrons 0.5 — 8 MeV
> Many design changes.

» Name change: MSL-RAD-like part 1s now called CPD
(Charged Particle Detector).

» 2 Instruments 1n one package with shared interface.



A Thing of Beauty
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EFND: Capture Gated Neutrons

Double pulse signature.

Pulse 1: sum of recoil proton
light flashes from thermalizing
(avg. # recoil protons ~ 10).

Pulse 2: thermalized neutron
captured by 1B 2> 4He + "Li + y

At distribution exponential,
st 05 0s)

Capture pulse amplitude is in
narrow range.

15t pulse amplitude related to
incident neutron energy.

Capture probability strongly
energy dependent.
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FND Scintillator Orb with
Calibration LEDs and Diodes

EJ254X1. Scintillator “Orb”’
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FND Sensor Design
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EFND Signal Processing

Current from PMT base = transimpedance amplifier
- shaping amplifier = fast ADC - FPGA.

FPGA logic looks for pulse pairs.

If 27d pulse within time & amplitude windows, it
might be a neutron.

Record amplitudes of 15t & 274 pulses, At between
pulses, absolute time.

Gating provides strong (not 100%) discrimination
against y’s and charged particles.



Region of Interest
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Region of Interest
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CPD = MSL-RAD

Humidity: CsI(T1) = BGO.

BGO peak emission A = 480 nm
(green), CsI A = 540 nm (orange).

charge
\ palﬁcle?
Needed green-sensitive diodes so A

use green-emitting plastic for E &
F scintillators.

< EJ-260, brighter than BC-432.

% BGO light output small
compared to CsI(TI). n

F was 1.2 cm thick, now 1.8 cm.

F1 (upper) and F2 (lower) are
optically coupled in MSL-RAD;
decoupled for ISS-RAD.



RAD Interface Board (RIB)

< RIB functions:

Talks to both instruments.

Talks to Station via 1553, to laptop via USB.

Handles many different packet types.

Provides power to instruments from 28V or 120V.
< System has 4 FPGA’s (2 CPD, 1 FND, 1 RIB)

2 8051 microcontroller cores (CPD, RIB).

6 processors to program & make work together (3 legacy).

< Lots of debugging needed.



RAD Interface Board (RIB)

< RIB functions:
Talks to both instruments.
Talks to Station via 1553, to laptop via USB.
Handles many different packet types.
Provides power to instruments from 28V or 120V.
< System has 4 FPGA’s (2 CPD, 1 FND, 1 RIB)
2 8051 microcontroller cores (CPD, RIB).
6 processors to program & make work together (3 legacy).

<+ Lots of debugging needed. ~35 data packet types flow in.



Operations Concepts

< MSL-RAD operations based on “observation” of a
specified duration, typically 16 minutes.

During observation, onboard code fills histograms, compresses &
stores selected pulse-height event records.

At end, histograms and events are stored to NVRAM.

Observation stops, RAD sleeps for a specified time (30 seconds),
wakes up, starts new observation.

Curiosity’s main computer queries RAD a few times per day,
retrieves observation data, telemeters it.

< ISS-RAD: always on, provides many data products on a 1-
minute cadence.

\/

< Telemetry volume = few PHA records from CPD.



Data Products

% Cyclic (1 minute, on ISS 1553 bus):
B dose rate, E dose rate
B dose equivalent rate (= <Q> from LET spectrum)
FND dose equivalent rate (crude).

Cumulative doses & dose equivalents.

Differential proton flux in 3 bands: 20-34 MeV; 35-71 MeV; 72-
122 MeV.

% Ground Analysis Software (GAS) produces another set of DP’s:
More accurate neutron dose equivalent from FND.
Neutron absorbed dose from FND.
Neutron dose from CPD (E > 5 MeV) using s/w from J. Kohler.

Fluxes of low-energy heavy ions.



Configuration

Two tables determine CPD configuration (~ 500
adjustable parameters).

FND has a few parameters (HV, windowing cuts).

RIB firmware uses a few additional Look-Up Tables.



ISS-RAD FM Calibration

< Flight Model Tour:
PTB, Braunschweig, May.
NSRL, Brookhaven, NY, April & June.
IUCEF, Indiana University Cyclotron, IU, August.
AmBe testing at JSC.

< At PTB, discovered bad optical joint between FND orb
and PMT - replace with spare, re-test @ PTB in Oct.



Calibration & Requirements

Verification

Neutrons @ PTB from 250 keV to 14.8 MeV.
Protons (@ NSRL and IUCEF, 30 MeV to 1 GeV.

Heavy 1ons @ NSRL (He, C, Si, Fe) at energies from
~ 100 to 1000 MeV/nuc.

Challenging to make B and E dose rates ~ equal 1n
beam run.

B area = 1.9 cm?, E area = 19 cm?, want same fluence
on both (large, uniform beam) while keeping total rate
low to avoid deadtime (~ 500 usec between events).



Operating Modes

< For EM calibration runs in 2013, only one subsystem
was enabled at a time.

Avoided collisions of data packets in RIB.
Not flight-like.

<+ For FM, run as close to flight-like as possible.
Both enabled.

Some data corruption seen, resolved.
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F2 with 1 GeV protons _\ o~L3
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< Proton peak (channel ~ 2600) °F
well separated from pedestal [ _
(channel ~ 1300). o
< Much cleaner than MSL-RAD pedesta
—> higher efficiency for neutral L

particle detection.
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BGO vs. Csl

15000 40140408 23 50 28 proton lgev.epd.rzn

E | < 2.8 cm depth stops protons
U up to 120 MeV. (90 MeV 1n
14000 E— | : CS:[.)

: - - < Light yield reduced by ~

factor of 10 compared to

- CsI(TY).
o F Still easily see min-1 Z=1
o b 4 (AE ~ 24 MeV).

D Pulse Height (“U” channel)
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stopping protons.
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END Sanity Check

v/ ndf 1002 / 15
10 P1 883.9
P2 10.63
TP -0.6255
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Time between pulses (microsec)

Random coincidences have flat distribution 1n At.
Fit to constant (P1) + exponential (P2, P3).
Mean of exponential = -1/P3 = 1.6 us.

Background events dominate at large values of At,
neutrons dominate at small.



FND: 567 keV Neutrons
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Recoil Amplitude after subtraction recoil

Recoil spectrum at long At ~ background spectrum.

Subtract = cleaned-up spectrum.

Capture pulse spectrum fit suggests some background 1s present.
Zoomed-1in recoil spectrum ~ entirely above threshold.



Neutron Dose Equivalent vs.
Recoil Amplitude
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Used PTB data to determine power law for EM.
Folds in FND efficiency and dose equivalent vs. energy (ICRP74)

Conversion factors (nSv/count) stored in look-up table (LUT), used in
computation for cyclic data.

Will be updated when final FM calibration data obtained.

Coarse algorithm used onboard (no background subtraction).



AmBe Test at PTB
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Expected dose equivalent rate = 0.93 uSv/minute.

Conversion factors in LUT need refinement. (EM??)



Dose Equivalent Accuracy

< Improved accuracy in GAS compared to Cyclic.
More sophisticated algorithm.

Background subtraction (large At recoil spectrum).

<+ May need to include higher-energy neutrons measured
in CPD.

CPD neutron spectrum unfolded with method used for
MSL-RAD.



Charged Particle Calibration

\/

% Gains & offsets used onboard.

R/

< Calculated gains 1n silicon detector channels typically
within ~ 5-10% of measured gains.

7

< Scintillator responses more complicated:
Calibrate to high-energy protons.

Within factors of 2 of estimates based on light yield
from y’s.

Quenching, light yield, light collection efficiency all can
vary from 1deal, tend to give lower gain.



Conclusions

ISS-RAD will be flown to ISS 1n first half of 2015.
No chance to tweak settings for many months.
CPD calibration & configuration close to final.
FND calibration to be finalized after next PTB run.

GAS to be delivered to JSC 1in next few weeks.
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