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Curiosity Mission Update

} ReaChEd base Of Mt_ = : Sol 713 - MAHLI view of front left
Sharp yestersol. ez

» On schedule - goal
was to reach Mt.
Sharp at end of
prime mission.

» Driving slower than
expected at first,
surprising wheel
damage.
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Path As Seen From Orb




Solar Cycle Predictions -

Cycle 23 Data + 2007 Predictions Actual Cycle 24

Solar Cycle 24 Sunspot Number Prediction ISES Sclar Cycle Sunspot Mumber Pregression
Data Through 31 kar 07 Observed data through Sep 2013
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Cycle 24 is weakest in ~ 100 years (not predicted).

High Prediction (Smaoathed) - 1-Sigma Errer
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MSL-RAD

Silicon detector telescope
with 3 elements (A, B, C).

Csl scintillator = D.

Plastic scintillators: E = 1.8
cm, F=1.2 cm.

lon (accepted)

F 3 anticoincidence’ upper ‘\‘\ Penetraﬁngstopping,”z
(F1) and lower (F2). \‘ "

D & E each have 3 readout
photodiodes attached.
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» Scintillator readout diodes

WA=V i A

D ]

MSL-RAD

are used in coincidence in
triggers (avoids triggering
on y-rays that make a
direct hit in diodes).

DH*DM*IF*IC = neutral
EH*EM*IF*IC = neutral
EH*EM = E dosimetry
BU = B dosimetry

Dosimetry triggers accept
omnidirectional radiation.

y-ra

Penetrating Stopping
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2 Diode Segmentation & FOV

28 °

SSD-A2 SSD-A1

A2, B, C use inner segment of diodes, A1 uses
outer.

» Two fields of view, two geometry factors.

» A2*B cone has half-angle ~ 18°, G=0.17 cm? sr.
4

4

.

A1*B cone ~ 30°, G=0.72 cm? sr.
Use A2*B events for LET spectrum.
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RAD Cruise Results
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RAD Cruise Data, June/July 2012
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» Tissue dose rate = 0.48 +- 0.08 mGy/day
» Dose equivalent rate = 1.8 +- 0.3 mSv/day

» SEP event contribution ~ 14 days of GCR.



Landing!
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RAD Surface Results
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Average E dose rate ~
210 uGy/day, ~40% of
the cruise dose rate.
On an airless body,
expect dose rate to be
50% of free space.
<Q> = 3.05 + 0.05,
~30% lower on surface
than in cruise.

Atmospheric shielding
& increased modulation
decrease dose rates
compared to cruise.



RAD Surface Results

Landing!
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Average E dose rate ~
210 uGy/day, ~40% of
the cruise dose rate.
On an airless body,
expect dose rate to be
50% of free space.
<Q> = 3.05 + 0.05,
~30% lower on surface
than in cruise.

Atmospheric shielding
& increased modulation

decrease dose rates
compared to cruise.
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Count Rate (day?)

Diurnal Variations
S. Rafkin
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“Thermal tide” > +- 5% daily variations in pressure 2> +- 2%

variation in radiation dose rate, inversely correlated with P.
» Thinner atmosphere - fewer neutrons made + more heavy ions

survive traversal 2 higher dose rate.

Pressure data from the REMS team.
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Neutron spectrum
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D, E spectra inverted 2 y and neutron spectra.
» Neutron threshold energy ~ 8 MeV.

D =14 + 4 uGy/day, about 7% of total.
H=61 =+ 15 uSv/day, about 9% of total.
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E dose rate from RTG < 1 uGy/day in ground test.
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E Dose Rate
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Sols Since Landing

» Four small solar events, including one last
week. (Another one on the way??)
> RAD under avg. 21 g cm2 CO; = E 00 > 160 MeV

» Many Forbush decreases.
» SEP contribution to total dose ~ negligible.
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Sols Since Landing
» Look for correlations w/seasonal atmospheric
chanﬂes (scaled column depth in blue) and
with heliospheric changes (scaled Oulu NM
count rate in black).

» More influenced by heliosphere.
» Thanks to REMS team for pressure data.




Z = 1 Electrons & H
|sotopes ¥t

Calorimetry useful
for particle id.

Select slow Z=1
particles that stop in
D: hits in A2, B, C,
D, but no energy in
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Energy in C (MeV) Electrons below the

proton band.




log10(energy in D)
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» D vs. C again but
now include min-I
in ABC.

» See low energy
w  electrons and
maybe pions
stopping in D.
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Energy in E (MeV)

20

Penetrating Z=1, 2

40 60 80 100

Energy in D (MeV)
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» Evs. D, require Z=

1 or 2 in ABC +
energy in F2.

» See high-energy

4

orotons, deuterons,
nelium.

Use to calculate
integral fluxes.
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Cruise vs. Surface LET -
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» Both spectra made with A2*B events.

» RTG background subtracted from both but
less certain for surface.




RAD LET vs. CRaTER LET 4

» Compare silicon LET

spectra (~21gcm=2CO, [ 77 7

shielding) to LET spectra | SN " crarenoues

from CRaTER with 0.2, 6, "/ R

and 9 g cm2 shielding. © | \, | _
» RAD sees slightly more & | xij

min-| charge 1 particles = | ‘&Ei T

and fewer heavies, as %

expected. T SOOI 0 |

AE/AX in silicon (keV/um)




Flux Model w/Modulation
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Particles cm~? sec?!

Get ® from Oulu NM count rates, use as input to

i DLR

Masarik & Reedy GCR flux model (red),compare to

coincidence rates in A1*B and A2*B.
» Model is top of the atmosphere flux.



Summary and Conclusions -

RAD made the first measurement of

radiation dose on a transit to Mars and

continues to work well on the surface.
Diurnal and seasonal variations observed.
First SEP events observed on another planet.

Mars dose rate predictions span a factor of ~4,
from about 2 of what RAD is measuring to about
a factor of 2 higher.

For model validation, need to study spectral
details & extend comparisons to include both flux
models and transport models.
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