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Main Topics 

• Calibration 
• Vavilov/Landau vs. Bethe 
• Converting Si dose to tissue dose 
▫ Modeling 
▫ Insights from RAD (with caveats) 



LET: Measured vs. Ideal  
• Bethe formula is deterministic, gives <dE/dx>. 

• Full Vavilov probability distribution has same average as 
Bethe, <LET>Vavilov = <dE/dx>Bethe = LET∞. 

• If distribution truncated, <LET>Vavilov < LET∞. 

• Truncation of Vavilov distribution is a function of 
detector thickness and/or cuts made in data analysis. 

 

 



Calibration of Thin Silicon Detectors 

• If peaks from minimum-ionizing charge-1 particles are 
used for calibration, associate peak with “most probable” 
energy loss rather than the mean. 
▫ True both for flight data and accelerator data. 
 



Data: 1 GeV protons in 300 µm Si 
Peak ~ 95 keV Bethe: 126 keV 



Compare Ions @ 1 GeV/nuc in CRaTER 

• Ratio always larger for thicker detector, 
increases as energy deposition increases. 

• As peak  mean, Vavilov  Gaussian. 
• Peak/average values > 1 don’t make sense. 
 

 
 

Ion 150 µm 
peak/averag

e 

1 mm 
peak/averag

e 
H 0.68 0.79 

He  0.75 0.86 

C 0.87 0.98 

Mg 0.95 1.05 

Fe 1.03 1.14 



Calibration with Heavy Ions  
• Problem: Vavilov formalism 

fails for Z > 1.  

• See this in 180 MeV/nuc 4He 
data from HIMAC in 2012 
taken with CRaTER flight 
spare: 
▫ Measured ∆E distributions in 1 

mm detectors are ~ Gaussian, 
predicted distributions are 
skewed. 

• Probably best to use Bethe. 



Vavilov Avg. vs. Bethe Formula 
• Results for simulated 1 GeV 

protons on 148 µm of Si (D1 in 
CRaTER). 

• Expected <∆E> from Bethe =  
62 keV. 
▫ My code uses GEANT3 

Landau distribution, gives ~ 
66 keV (100k events).  

• Mean shifts when high end tail 
is truncated  Implications 
for dosimetry. 

• As check of code, look for 
peak.  
▫ Find ~ 41.7 keV, Bichsel 

formula gives 42 keV. 
 



Underlying Physics 

• High-end tail of energy deposition arises from rare 
collisions with large energy transfers to single e-. 

• Tmax ≈ 2meβ2γ2 for ions. 
• For example, @ 1 GeV/nuc, (βγ) ~ 1 so Tmax ~ 1 MeV. 
▫ Range of 1 MeV e- in Si = 2.3 mm. 
▫ 4 MeV ∆E in 148 µm of Si requires ~4 maximum-

energy transfer collisions. 
• Statistics of small numbers  Poisson distribution. 
▫ Vavilov resembles Poisson. 
▫ As LET increases and/or detector gets thicker, “rare” 

collisions become less rare, Poisson  normal. 



Truncation of Vavilov Distribution 
1. Electrons escape & carry 

off energy – unavoidable. 
2. In some analyses, require 

mutually consistent hits 
in detector pairs. 
▫ E.g., in MSL-RAD onboard 

LET spectrum, two detectors 
are checked and they must be 
mutually consistent to within 
a factor of 2. 
 



Vavilov Distributions in CRaTER Data 

• Pick small, random GCR 
sample (Jan. 1-10, 2012). 

• For D2 plot, require D4 
and D6 to have 0.1 – 0.5 
MeV ∆E, so we have high-
energy charge-1 particles ~ 
parallel to detector axis. 

• Similar for other plots. 
• Get ~ same distribution in 

all 3, mean is ~ 0.42 MeV 
and RMS is ~ 0.3 MeV. 



Compare to Simulated Protons 
• 25k simulated GCR events. 
• Distributions all drop off 

above 5 MeV in simulation. 
▫ Slightly truncated in code. 

• Averages close to GCR data, 
RMS’s ~ 10% smaller. 

• Vavilov distributions are 
seen in flight data & they 
can be simulated 
reasonably well.  



Silicon to Water LET Conversion 
Slide by M. Golightly 



Fit vs. Simple Scaling for LET∞ 

• Factor of ~ 1.23 is often used to 
multiply silicon dose to give 
tissue dose. 

• For GCR it may be more 
accurate to use the simple scale 
factor. 

• Benton formula has smaller 
errors below 50 MeV, but for 
E > 80 MeV, the scale factor is 
better (avg. err = 1.4% vs 2.3%). 
▫ Most GCRs have E > 80 MeV. 

• May be best to use a hybrid for 
RAD & CRaTER data. 
 

Relative Error = |LETtrue – LETcalc| / LETtrue 
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Recap 

• Bethe formula gives correct average ∆E’s. 

• Actual distributions are Vavilov for high-energy, 
low-charge ions. 
▫ Vavilov distribution has same mean as Bethe 

provided full distribution is captured. 

• For dosimetry, escape of e- or truncation by 
other means  measured LET < LET∞. 

• Si to tissue factor of 1.23 assumes LET ∞ in Si. 

 

 



How to Correct for LET < LET∞? 

• LET < LET ∞  factor needs to be larger…but 
how much larger? 

• In earlier simulations, I used restricted dE/dx to 
compensate for e- escape. 
▫ Off a bit. 

 



Restricted Energy Loss Theory & 
Implementation 

Replaces 
Tmax 

Get Bethe formula 
back if Tcut  = Tmax 

Tmax ≈ 2meβ2γ2 for ions. 



What to Use for Tcut? 
• In simulation, particles are 

followed along paths through 
the detector in 1 µm steps. 

• In each step, calculate energy 
of an electron (E) with range R 
equal to the remaining depth 
of the detector E(R(t – x)). 

• This value is used for Tcut. 
• Overestimates escape. 
▫ Treats delta-electrons as if 

they are forward-produced at 
exactly 0°. 

▫ Ignores multiple scattering. 

t 

x 

 



Upshot 

• RAD cruise paper: Dose conversion factor of 1.45 
(±0.2) based on restricted dE/dx with low Tcut. 

• Making Tcut more realistic changes this result. 
▫ Include approximation of “detour factor” for electrons. 
▫ Detour factor accounts for multiple scattering of e- in 

the detector (tends to keep them in the detector). 

 



Tabata and Andreo (1998) 
• Formula for detour factor 

in the 1-50 MeV range for 
electrons in elements. 

• Aluminum close to Si. 
• Detour factor is projected 

range divided by CSDA 
range – projected paths 
are ~ factor of 2 shorter 
than nominal. 
▫ Put factor of 2 into code 

used to calculate Tcut in 
restricted energy loss 
formalism.  



New RAD Simulation Result 
• Simulate GCR (B-O spectrum) 

with 20 g cm-2 CO2 above RAD. 
• Compare LET in B detector to 

LET in water at entrance 
window above RAD. 

• Dose conversion factor becomes 
2.33/Mean = 1.38. 
▫ Distribution asymmetric, RMS  

~ 7% of mean. 
• Check sensitivity of result to 

detour factor: 
▫ Value of 3 instead of 2 gives 

conversion factor of 1.36. 
 
 



Insight from RAD Data 

• RAD B (silicon) and E (plastic) detectors are used for dosimetry. 
▫ All hits above threshold contribute, regardless of hits in other detectors.   

• Differences: 
▫ E misses some charged particle dose (stoppers in D or F). 
▫ E is more sensitive to neutrons, B is more sensitive to gammas. 
▫ Mass of E is ~ 300× mass of B. 

A, B, C are  
300 µm Si 



RAD Cruise Data 
• RAD was moderately shielded in 

cruise, ~ 16 g cm-2 on average.  
• E dose was ~98% due to charged 

particles during solar quiet time 
with ~ 0 RTG background. 

• E calibration is dominant 
uncertainty (quenching). 

• Additional caveats:  
▫ B has RTG background.  
 Measured @ Cape; subtracted 

from flight data in lower plot. 
▫ E is plastic, not water (2% 

effect). 
• Scale factor of 1.37 makes B and 

E average dose rates equal. 
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Conclusions, Next Steps 

• Si  water factor of 1.23 is too small because 
measured LET in Si < LET∞. 

• Si  water factor of 1.45 for 300 µm Si is too big 
(overestimated electron escape). 

• Revised calculation with detour factor=2  1.38. 
• RAD data suggest 1.37, with several caveats. 
• For CRaTER, factor is larger for thin detectors 

(150 µm), smaller for thick (1 mm). 
• Still working on simulation, RAD E calibration. 
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