Dosimetry with thin silicon detectors

Cary Zeitlin Southwest Research Institute 19th WRMISS, Krakow, Poland September 9-11, 2014

Main Topics

- Calibration
- Vavilov/Landau vs. Bethe
- Converting Si dose to tissue dose
 - Modeling
 - Insights from RAD (with caveats)

LET: Measured vs. Ideal

- Bethe formula is deterministic, gives <dE/dx>.
- Full Vavilov probability distribution has same average as Bethe, $\langle LET \rangle_{Vavilov} = \langle dE/dx \rangle_{Bethe} = LET_{\infty}$.
- If distribution truncated, $\langle LET \rangle_{Vavilov} \langle LET_{\infty}$.
- Truncation of Vavilov distribution is a function of detector thickness and/or cuts made in data analysis.

Calibration of Thin Silicon Detectors

- If peaks from minimum-ionizing charge-1 particles are used for calibration, associate peak with "most probable" energy loss rather than the mean.
 - True both for flight data and accelerator data.

Data: 1 GeV protons in 300 µm Si

Compare lons @ 1 GeV/nuc in CRaTER

Ion	150 μm peak/averag e	1 mm peak/averag e
Н	0.68	0.79
He	0.75	0.86
С	0.87	0.98
Mg	0.95	1.05
Fe	1.03	1.14

- Ratio always larger for thicker detector, increases as energy deposition increases.
- As peak \rightarrow mean, Vavilov \rightarrow Gaussian.
- Peak/average values > 1 don't make sense.

Calibration with Heavy lons

- Problem: Vavilov formalism fails for Z > 1.
- See this in 180 MeV/nuc ⁴He data from HIMAC in 2012 taken with CRaTER flight spare:
 - Measured △E distributions in 1 mm detectors are ~ Gaussian, predicted distributions are skewed.
- Probably best to use Bethe.

Vavilov Avg. vs. Bethe Formula

- Results for simulated 1 GeV protons on 148 μm of Si (D1 in CRaTER).
- Expected <∆E> from Bethe = 62 keV.
 - My code uses GEANT3 Landau distribution, gives ~ 66 keV (100k events).
- Mean shifts when high end tail is truncated → <u>Implications</u> <u>for dosimetry</u>.
- As check of code, look for peak.
 - Find ~ 41.7 keV, Bichsel formula gives 42 keV.

Edep in D1 (MeV)

Underlying Physics

- High-end tail of energy deposition arises from rare collisions with large energy transfers to single *e*⁻.
- $T_{max} \approx 2m_{\rm e}\beta^2\gamma^2$ for ions.
- For example, @ 1 GeV/nuc, ($\beta\gamma$) ~ 1 so T_{max} ~ 1 MeV.
 - Range of 1 MeV e^{-1} in Si = 2.3 mm.
 - $\hfill 4 MeV \ensuremath{\Delta E}$ in 148 μm of Si requires ${\sim}4$ maximum-energy transfer collisions.
- Statistics of small numbers \rightarrow Poisson distribution.
 - Vavilov resembles Poisson.
 - As LET increases and/or detector gets thicker, "rare" collisions become less rare, Poisson → normal.

Truncation of Vavilov Distribution

- 1. Electrons escape & carry off energy unavoidable.
- 2. In some analyses, require mutually consistent hits in detector pairs.
 - E.g., in MSL-RAD onboard LET spectrum, two detectors are checked and they must be mutually consistent to within a factor of 2.

Vavilov Distributions in CRaTER Data

- Pick small, random GCR sample (Jan. 1-10, 2012).
- For D2 plot, require D4 and D6 to have 0.1 – 0.5 MeV ∆E, so we have highenergy charge-1 particles ~ parallel to detector axis.
- Similar for other plots.
- Get ~ same distribution in all 3, mean is ~ 0.42 MeV and RMS is ~ 0.3 MeV.

Compare to Simulated Protons

- 25k simulated GCR events.
- Distributions all drop off above 5 MeV in simulation.
 - Slightly truncated in code.
- Averages close to GCR data, RMS's ~ 10% smaller.
- Vavilov distributions are seen in flight data & they can be simulated reasonably well.

Silicon to Water LET Conversion

Slide by M. Golightly

$LET_{Si} \rightarrow LET_{H_2O}$ Conversion

Benton, E.R., E.V. Benton, and A.L. Frank. "Conversion between different forms of LET." *Rad Meas*, **45(8)**, (2010) pp 957-9.

$$\log(\text{LET}_{\infty}\text{H}_{2}\text{O}) = -0.2902 + 1.025\log(\text{LET}_{\infty}\text{Si})$$

- Based on Henke and Benton's range/energy relations of ions in H₂O and Si (Henke and Benton, 1967; Benton and Henke, 1969)
 - Z = 1 to 26, E = 0.8-2000 MeV/amu
- Ratio $LET_{\infty}H_2O$: $LET_{\infty}Si$ varies
 - 30% for E = 0.8-2000 MeV/amu
 - 5% for E = 50-2000 MeV/amu
- Functional relationship of $LET_{\infty}H_20$ to $LET_{\infty}Si$ obtained from least squares fit to data

Fit vs. Simple Scaling for LET_{∞}

- Factor of ~ 1.23 is often used to multiply silicon dose to give tissue dose.
- For GCR it may be more accurate to use the simple scale factor.
- Benton formula has smaller errors below 50 MeV, but for E > 80 MeV, the scale factor is better (avg. err = 1.4% vs 2.3%).
 Most GCRs have E > 80 MeV.
- May be best to use a hybrid for RAD & CRaTER data.

Relative Error = $|LET_{true} - LET_{calc}| / LET_{true}$

Fit vs. Simple Scaling for LET_{∞}

- Factor of ~ 1.23 is often used to multiply silicon dose to give tissue dose.
- For GCR it may be more accurate to use the simple scale factor.
- Benton formula has smaller errors below 50 MeV, but for E > 80 MeV, the scale factor is better (avg. err = 1.4% vs 2.3%).
 Most GCRs have E > 80 MeV.
- May be best to use a hybrid for RAD & CRaTER data.

Relative Error = $|LET_{true} - LET_{calc}| / LET_{true}$

Recap

- Bethe formula gives correct average ΔE 's.
- Actual distributions are Vavilov for high-energy, low-charge ions.
 - Vavilov distribution has same mean as Bethe provided full distribution is captured.
- For dosimetry, escape of e^{-} or truncation by other means \rightarrow measured LET < LET_{∞}.
- Si to tissue factor of 1.23 assumes LET $_{\rm \infty}$ in Si.

How to Correct for LET < LET_{∞}?

- LET < LET $_{\infty}$ \rightarrow factor needs to be larger...but how much larger?
- In earlier simulations, I used restricted dE/dx to compensate for *e*⁻ escape.
 - Off a bit.

Restricted Energy Loss Theory & Implementation

What to Use for T_{cut} ?

- In simulation, particles are followed along paths through the detector in 1 μm steps.
- In each step, calculate energy of an electron (E) with range R equal to the remaining depth of the detector E(R(t – x)).
- This value is used for $T_{\rm cut}$.
- Overestimates escape.
 - Treats delta-electrons as if they are forward-produced at exactly 0°.
 - Ignores multiple scattering.

Upshot

- RAD cruise paper: Dose conversion factor of 1.45 (±0.2) based on restricted dE/dx with low T_{cut}.
- Making T_{cut} more realistic changes this result.
 - Include approximation of "detour factor" for electrons.
 - Detour factor accounts for multiple scattering of e⁻ in the detector (tends to keep them in the detector).

Tabata and Andreo (1998)

- Formula for detour factor in the 1-50 MeV range for electrons in elements.
- Aluminum close to Si.-
- Detour factor is projected range divided by CSDA range – projected paths are ~ factor of 2 shorter than nominal.
 - Put factor of 2 into code used to calculate T_{cut} in restricted energy loss formalism.

New RAD Simulation Result

- Simulate GCR (B-O spectrum) with 20 g cm⁻² CO₂ above RAD.
- Compare LET in B detector to LET in water at entrance window above RAD.
- Dose conversion factor becomes 2.33/Mean = 1.38.
 - Distribution asymmetric, RMS
 ~ 7% of mean.
- Check sensitivity of result to detour factor:
 - Value of 3 instead of 2 gives conversion factor of 1.36.

- RAD B (silicon) and E (plastic) detectors are used for dosimetry.
 - All hits above threshold contribute, regardless of hits in other detectors.
- Differences:
 - E misses some charged particle dose (stoppers in D or F).
 - E is more sensitive to neutrons, B is more sensitive to gammas.
 - Mass of E is $\sim 300 \times$ mass of B.

RAD Cruise Data

- RAD was moderately shielded in cruise, ~ 16 g cm⁻² on average.
- E dose was ~98% due to charged particles during solar quiet time with ~ 0 RTG background.
- E calibration is dominant uncertainty (quenching).
- Additional caveats:
 - B has RTG background.
 - Measured @ Cape; subtracted from flight data in lower plot.
 - E is plastic, not water (2% effect).
- Scale factor of 1.37 makes B and E <u>average</u> dose rates equal.

Conclusions, Next Steps

- Si \rightarrow water factor of 1.23 is too small because measured LET in Si < LET_{∞}.
- Si → water factor of 1.45 for 300 µm Si is too big (overestimated electron escape).
- Revised calculation with detour factor= $2 \rightarrow 1.38$.
- RAD data suggest 1.37, with several caveats.
- For CRaTER, factor is larger for thin detectors (150 μm), smaller for thick (1 mm).
- Still working on simulation, RAD E calibration.