ICCHIBAN 2 & 4 & 6: NRPB Results

Luke Hager, David Bartlett and Rick Tanner National Radiological Protection Board, UK

Standard issue neutron dosemeters of simple design, processed using simple techniques developed for personal dosimetry, may be used to estimate the neutron component in spacecraft.

- Electrochemically etched pits in poly allyl diglycol carbonate (PADC or CR-39[®]) etched track detectors are identified and counted using fully automated read-out procedures.
- ICCHIBAN irradiations have allowed determination of the LET threshold of detection for the dosemeter and etch regime.

Dosemeter Layout for Irradiation

Processing Methods

Electrochemical etch - back face

- 11.5 hours 20% NaOH at 40°C followed contiguously
- by 8 hours 20% NaOH at 40°C at 23.5 kVcm⁻¹

Subsequent Chemical etch - both faces

• 18 hours 20% NaOH at 80°C

Comparison of Etch methods

⁵⁶Fe 60° to normal incidence

NASA STS 105 - obvious HZE track

Back face

NASA STS 105 - typical HZE track

Back face

Front face

• PADC neutron personal dosemeter responds to neutrons plus neutron-like interactions of high-energy protons

- Only responds directly to protons of E_p < about 1 MeV
- Some response to heavier charged particles with LET₂₀₀ > about 30 keV μ m⁻¹, depending on particle type
- Can distinguish HZE electrochemically etched tracks by second chemical etch
- Preliminary measurements on NASA STS and ISS indicate that a correction of 20 to 30% is necessary to account for the detector HZE response.

ICCHIBAN-2 Irradiations

Angle dependence of response ICCHIBAN-2 data

HIMAC Japan 2002 1.2 ⁵⁶Fe 1.0 ²⁸S; **Electrochemical Etch** ¹²C Tracks per particle 0.8 0.6 0.4 0.2 0.0 15 0 30 45 60 75

Angle, degrees from normal incidence

Angle dependence of relative response: ICCHIBAN-2 data

	00	15°	300	60°	75°	ISO free air	ISO on body
⁵⁶ Fe 464 MeV/n	0.90	0.85	0.70	0.30	0	30% to 40%	15% to 20%
²⁸ Si 469 MeV/n	0.50	0.55	0.02	0	0	about 5%	about 2%

As well as helping to improve the neutron dose assessment the ICCHIBAN calibrations are also very useful to help understand a little bit better the response to HZE of our detector Results of ICCHIBAN-4 Irradiations

Electrochemical etching- single detector charged particle results: ¹²C 400 MeV/n

Particle/ Energy	Shielding condition	LET keV µm ⁻¹	Dose mGy	Fluence cm ⁻²	Corrected Net Tracks ^(a) cm ⁻²		Note
					Det.1	Det.2	
¹² C 400 MeV/n	zero	10.963		57000	8	1	(b)
	5 g cm ⁻² Al	?		?	9	11	(c)
	10 g cm ⁻² Al	?	1	?	21	14	(d)
	5 g cm ⁻² PMMA	?		?	19	15	(e)

(a) Observed number of tracks cm $^{\rm -2}$ after subtraction of background and corrected for non-linearity at high track density

(b) Not significantly different from background. Primary beam particles below LET threshold

(c), (d), (e) Primary beam particles below LET threshold. A few higher LET fragments? - some larger tracks

In subsequent figures, detector 1 is edged in orange, detector 2 in red.

Electrochemical etching- single detector

charged particle results: ²⁰Ne 400 MeV/n

Particle/ Energy	Shielding condition	LET keV µm ⁻¹	Dose mGy	Fluence cm ⁻²	Corrected Net Tracks ^(a) cm ⁻²		Note
					Det.1	Det.2	
²⁰ Ne 400 MeV/n	zero	30.959		20200	690	23	(f)
	5 g cm ⁻² Al	?:		?	225	1180	(g)
	10 g cm ⁻² Al	?	1	?	8390	5520	(h)
	5 g cm ⁻² PMMA	?		?	5000	7020	(i)

(f), (g) At LET threshold – some non-uniformity of response across/between detectors because of small differences in applied field strength during processing
(h), (i) Just on LET threshold – some non-uniformity of response

In subsequent figures, detector 1 is edged in orange, detector 2 in red

Electrochemical etchingsingle detector charged particle results: ⁵⁶Fe 500 MeV/n

Particle/ Energy	Shielding condition	LET keV µm ⁻¹	Dose mGy	Fluence cm ⁻²	Corrected Net Tracks ^(a) cm ⁻²		Note
					Det.1	Det.2	
⁵⁶ Fe 500 MeV/n	zero	~ 190		~3300	3980	3790	(j)
	5 g cm ⁻² Al	?		?	3420	3440	(k)
	10 g cm ⁻² Al	?	1	?	380	360	(I)
	5 g cm ⁻² PMMA	?		?	3640	3570	(m)

(j), (k) Above threshold, 100% detection efficiency

- (I) Beyond Bragg peak- some fragments plus a few secondary neutrons?
- (m) Above threshold, 100% detection efficiency

In subsequent figures, detector 1 is edged in orange, detector 2 in red

506 microns

516 microns

485 microns

500 microns

Results of ICCHIBAN-6 Irradiations

Electrochemical etching ICCHIBAN-6 charged particle results

Particle/ Energy	Shielding condition	LET keV µm⁻¹	Nominal Fluence cm ⁻²	Corrected for sever Det.1	al net track al detecto Det.2	ks cm ⁻² rs <u>Det.3</u>
¹² C 135 MeV/n	Bare Beam	21.2	5000	5	2	19
	PMMA absorber	?	5000	3691	3256	3017
⁴⁰ Ar 500 MeV/n	Bare Beam	89.3	5000	4489	4993	4858
	PMMA absorber	?	5000	2990	3053	3119
⁸⁴ Kr 400 MeV/n	Bare Beam	397	5000	3375	3337	3326
	PMMA absorber	?	5000	3135	3026	3176

ICCHIBAN 6: ¹²C 135 MeV/n through PMMA

Detector 2 (511 µm)

Detector 3 (542 µm)

ICCHIBAN-6 Blind # 5

SUMMARY

• Efficiency of detection of charged particles highly dependent on particle type, energy and angle of incidence - results in low isotropic response for the electrochemical etch method used

• For neutron dose assessment the HZE response of the detector is not a problem as long as it can be subtracted

• A subsequent chemical etch is performed which identifies HZE tracks and removes unwanted HZE component from neutron dose assessment

ACKNOWLEDGEMENTS

The authors should like to thank Kazunobu Fujitaka, Yukio Uchihori, N. Yasuda, and their colleagues at NIRS, Eric Benton and Jack Miller, for their help with the ICCHIBAN measurements, and Edward Semones and Michael Golightly at NASA for the STS exposures.