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Low Earth Orbit and Exploratory Missions
Instrumentation and Analysis Parametersfor lonizing Radiation Dosimetry
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VIPER Strategic Plan
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Objective and Approach for Future Experiment

Objective

e Characterize polyethylene-shielded radiation environment on
International Space Station including the Service Module Zvezda crew
quarters in order to optimize retro-fit shield design for ISS.

Approach

e Perform detailed modeling of ionizing radiation environment and
measurements using in situ shielding material and radiation detectors.

Motivation
e Radiation exposure reduction ALARA
e Extend mission duration



Potential application of ALARA

DB-8, TLDs, TEPC show relatively high dose rate in
Zvezda Service Module crew quarters (CQs)

Crew spends “off-duty” time in SM CQs

Shielding distribution uncertain but significant solid angle
thought to be relatively thin

Thin area leaves questions about D gradient across
shallow and deep tissues

Retrofit 1s problematic due to volume constraints

Reasons to think retrofit will be effective, even though
massive shielding around large solid angle

— DB-8 ~5% reduction in dose seen with only ~1.52 g cm? H20O-
equiv Pb shield
— TeSS polyethylene shielded, comparison with other crew
e ~20% measured reduction Equivalent D in personal dosimeters
e Up to 40% reduction in biodosimetry



BRADOS
TLD and CR-39 PNTD results—this workshop

~10% reduction in absorbed dose over ~1 g cm™
~50% for shielded/unshielded DB-8 Oct 03 SPE ~1.x g cm™
shield



Summary
On-orbit Polyethylene Shield Evaluation

Perform directional measurements in CQ’s

— Parallel to Proton distribution (so-called pitch angle or “East-West effect) during dominant ISS
orientation

— Perpendicular test

— Establish any contribution of electrons/bremmstrahlung and trapped protons to CQ dose during
stormy space weather

Perform shielded measurements in Zvezda Service Module Crew Quarters and
U.S. Segment
— 0vs~5and~9.5 g cm™ shielded detectors

Collect ion and neutron E spectroscopy data in CQ’s
Post-installation: validate reduction gained by retrofits

Improved Active Dosimetry: establish reliable LET
with minimal crew-time and data downlink issues

Temporary Sleep Station (Cucinotta)

fissue spectral measurements



Operational Radiation Monitoring Detectors
Active Instruments

Issues

May not be relocatable
Limits on dynamic range of detection

No single instrument is adequate Tissue Equivalent

Proportional
Counter

Data storage and downlink/transfer
requirements

Volume and crew time constraints

R-16 1on chamber

Silicon Detectors Liuli
* B ‘

IVCPDS




Passive Detectors

Thermoluminescence and Plastic Nuclear Track Detectors

Issues _
+ Reliable Pille

Wﬂm B

*  On-orbit analysis not always possible

* Long turn-around on data collection

* Not capable of resolving GCR from
trapped proton or e-,bremmstrahlung
dose

* Not adequate for neutron spectroscopy

* No single instrument is adequate
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TeSS Polyethylene ‘“‘Radiation Bricks”

p=0.93 g cm-3
~14. % H by weight
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Zvezda Service Module
NASA-JSC CAD Model




Ray Tracing Results

Shielding (pathlength in assigned material) along each of 5000 rays is color-
coded to the total amount of shielding [g cm™]; thinnest shielding is white,

Top View

With 4.67 g cm-2 thick polyethy |
TeSS radiation bricks placed in starboard ¢ few quarters




View from Starboard Side End View
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With 4.67 g cm2 thick polydthylene constructed of
TeSS radiation bricks place cL in starboard crew quarters




Modeled Dosimetry
test shield: 4.7 g cm? polyethylene

Absorbed Dose Equivalent Dose
ISS orbit s mGy day-l 5 mSV day-l

Solar Minimum Activity Without With % Without With

Poly Poly reduction Poly Poly

shield shield shield shield
Trapped protons
SKIN-HIP 0.211 0.118 44 .2 0.299 0.170 42.9
EYE 0.214 0.122 43.0 0.302 0.176 41.7
Avg. BFO 0.116 0.073 37.2 0.168 0.108 35.7
Galactic Cosmic Radiation
SKIN-HIP 0.135 0.133 1.4 0.414 0.392 5.2
EYE 0.135 0.133 1.4 0.418 0.396 5.3
Avg. BFO 0.131 0.129 1.8 0.377 0.361 4.2
Combined Trapped Proton and GCR

0.346 0.251 27.5 0.712 0.563

0.349 0.255 26.9 0.720 0.572

0.247 0.202 18.4 0.545 0.469




Anisotropicity of Trapped Protons

Transfer compartment, Zvezda Service
Module

Anisotropic vs Isotropic Environme

Anisotropic Isotropic
Environmen

@ Method 18 Metnod 20Measured,

Validation of space radiation transport codes
J.W. Wilson, F.A. Cucinotta, M.J. Golightly, C. Hugger, J.E. Nealy, G.D.Qualls, F.F. Badavi, G. De Angelis, B.M. Anderson, M.S.
Clowdsley, N. Luetke, N. Zapp, M.R.Shavers, E. Semones



100 MeV Proton Anisotropy in SAA

J. W. Wilson, J. Nealy, et al. unpublished

Preliminary results removed

International Space Station: A Testbed For Experimental And Computational Dosimetry, Presented at COSPAR 2004.
J.W. Wilson (1), F. A. Cucinotta (2), M.J. Golightly (2), J.E. Nealy (3), G.D. Qualls (1), F.F. Badavi (4), G. De
Angelis (3), B.M. Anderson (1), M.S. Clowdsley (1), N. Luetke (5), N. Zapp (6), M.R. Shavers (7), E. Semones



100 MeV Proton Anisotropy in SAA

J. W. Wilson et al. unpublished

Preliminary results removed



For a common ISS orientation...

Preliminary results removed



Shield port C
hull
and upper aft
wall from
trapped p
belts?

LVLHXx
Ascending line of nodes



LVLHXx
Descending line of nodes




Shield more effective for trapped p
than for GCR, therefore, optimize for
trapped proton solid angle



The Alteino cosmic ion spectrometer (Casolino, et al. 2002) may be
used to characterize the heavy ion flux and the effectiveness of
radiation shielding materials.
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Altea used elsewhere?

Matroshka-R

Photo provided by S. Shurshakov, IBMP
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Electrons
Are incident electrons an issue in LEO?

ISS Program Medical Operations Requirements Document

7.5 RADIATION HEALTH AND EXPOSURE MONITORING

..During the mission, the ionizing radiation environment is monitored to provide
sufficiently comprehensive and timely data to:

1) maintain crew doses below legal limits and to practice ALARA actions to avoid unnecessary levels of
exposure;
2) collect and record information to assess crewmembers’ critical organ and tissue doses for an individual

mission and cumulativ e career records;

3) initiate immediate countermeasures for transient radiation exposure
events, e.g., during EVA, solar particle events, or electron belt enhancements.



Electrons

7.5.3.2.2 External Radiation Area Monitoring

External active radiation area monitoring shall monitor the time-resolved direction-
and energy-dependent charged-particle spectra immediately exterior to the
vehicle.

Rationale: ...to calculate the radiation environment inside the vehicle as part of the crew health risk
assessment process. ...monitor a significant portion of the external radiation environment that is
important to EVA crew exposures.

Consequences if not implemented: Increased uncertainty in estimated crew risks. Reliance on
inaccurate characterization of the external electron and proton environment for EVA crew exposure
predictions, which could lead to actual exposures that are significantly higher than estimated during the
EVA go/no-go decision process.
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Conclusions

Vector flux models important for many LEO measurements, including
shield design

— Environmental parameters must be known
— ISS orientation, detector orientation, location, time stamp necessary

Non-operational measurements may be driving the need to document
instrument and vehicle location and orientation

Development of some tools needed for LEO analysis may not be driven
by exploration needs

Reminder: Q and LET 4 hot the only quantities need for risk analysis

measure



Final Words

Thank you.

The NASA SRAG Manager
retired... farewell M. Golightly
Long live the SRAG Manager!

Congrats and good luck Mark
Weyland.




