

TL dose measurements on board the Russian segment of the ISS during Expedition-7 and -8

I. Apathy¹, Yu.A. Akatov², V.V. Arkhangelsky², S. Deme¹, A. Kaleri³, G. Reitz⁴

¹ KFKI Atomic Energy Research Institute, Budapest, Hungary

- ² Institute for Biomedical Problems, Moscow, Russia
- ³ Energia Rocket/Space Corporation, Moscow, Russia
- ⁴ German Aerospace Center (DLR), Cologne, Germany

The 'Pille' space qualified TLD system

- small, portable
- space-qualified
- suitable for reading out the TLDs on board, so
- a solution for EVA dosimetry as well

used on board the

- Salyut-6 and -7 space stations by Hungarian and Soviet cosmonauts
- Mir space station by ESA and NASA astronauts
- ISS by NASA astronauts and Russian cosmonauts **P** service instrument

Main Specifications of the 'Pille' TLD System

Dosimeters

Type: bulb

Material: CaSO₄:Dy

Dimensions: f 20 mm * 60 mm

Mass: 70 g (with carrying case)

Reader

Measuring range (s<10%): 3 mGy , 10 Gy (CaSO₄:Dy)

TLD Efficiency $e=1\pm10\%$ LET_{*}H₂O < 10 keV/mm

Read-out precision: 3 digits + exp.

Accuracy (above 10 mGy): d < 5%

Measuring modes: manual / automatic read-out

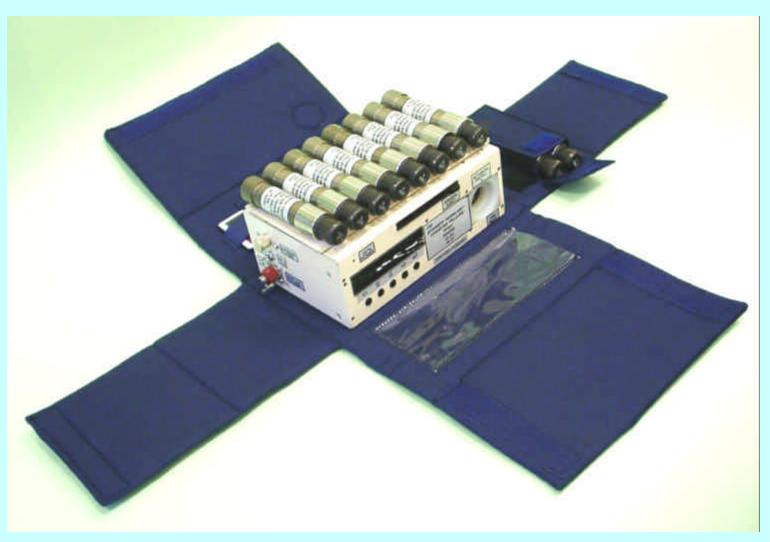
Display: 8-digit alphanum. LED

Storage of information: PCMCIA mem. card (> 4000 data sets)

Computer connection: RS-232, CAN

Dimensions: 70 mm (H)* 190 mm (W) * 120 mm (D)

Mass: 1,400 g


Power consumption: 0.1 / 1 / 7 W (standby/ready/readout)

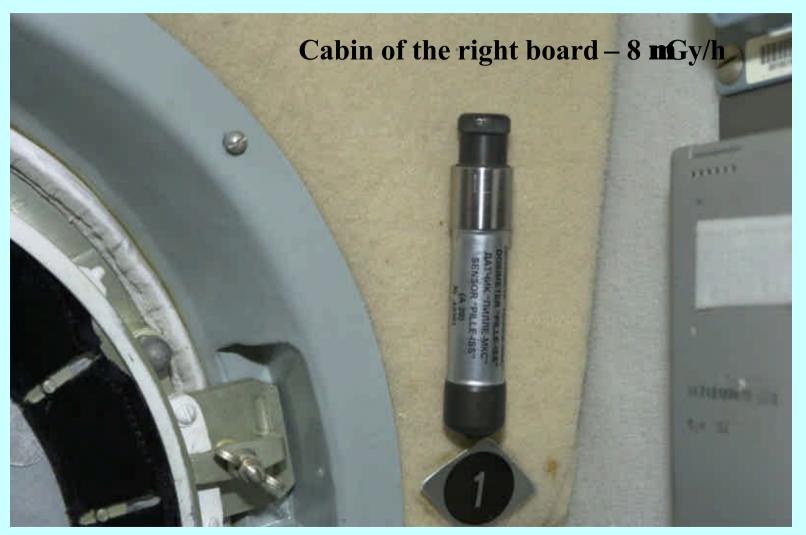
'Pille-MKS' on the Russian Service Module (Zvezda) of the ISS

- Consisting of
 - 10 Dosimeters (Nº A0301-A0310)
 - Reader
- Part of the service system
- Applied for
 - routine and EVA individual dosimetry and
 - onboard experiments
- Developed and manufactured by KFKI AEKI, Hungary
- Maintained by IBMP, Russia
- Launched on Progress-12 cargo S/C on 2003.08.29

The 'Pille-MKS' in its transporting case

The Russian Service Module (Zvezda) before docking to the ISS

The Russian Service Module (Zvezda) after docking to the ISS



Pille TLD measurements during Expedition-7 and -8

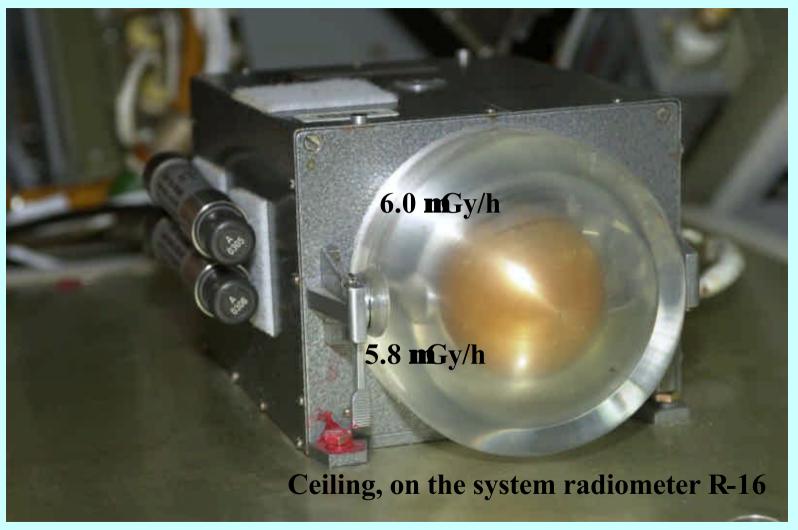
- The *Pille-MKS* system was
 - installed and started up by Yuri Malenchenko
 (Exp.7, commander, on board 2003.04.28 2003.10.27)
 - operated by Alexander Kaleri
 (Exp.8, board engineer, on board 2003.10.20 2004.04.29)
- 2822 measurements have been fulfilled until 2004.04.24
- Results of the measurements were
 - partly reported nearly realtime via radio to the Earth
 - completely transferred on memory card by S/C
 (Soyuz-TMA3) to the Earth

General location of the dosimeters

Dosimeter №	Location in Zvezda module	
A0301, A0302	Cabin of the right board, on both sides of the illuminator	
A0303, A0304	Cabin of the left board, on both sides of the illuminator	
A0305, A0306	Ceiling, on the system radiometer R-16	
A0307	Right board, beside of the cabin, on ceiling of the lavatory Dedicated for EVA reference measurement inside ISS	
A0308	Inserted in the Reader, which is fixed on the floor, right to illuminator N° 9 Dedicated for automatic measurements	
A0309, A0310	In the transporting case of the Reader, left to illuminator N° 9 Dedicated for EVA personal measurements	

September 8-10, 2004

WRMISS-9, Vienna



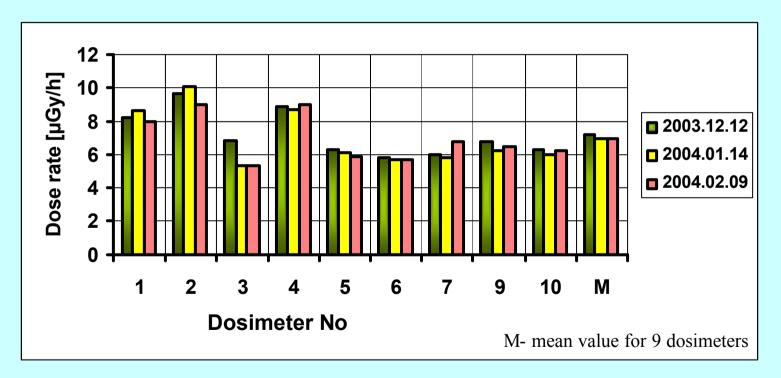
September 8-10, 2004

WRMISS-9, Vienna

Dosimeters Nº A0305 - A0306

September 8-10, 2004

WRMISS-9, Vienna


Dosimeter No A0308 and the Reader

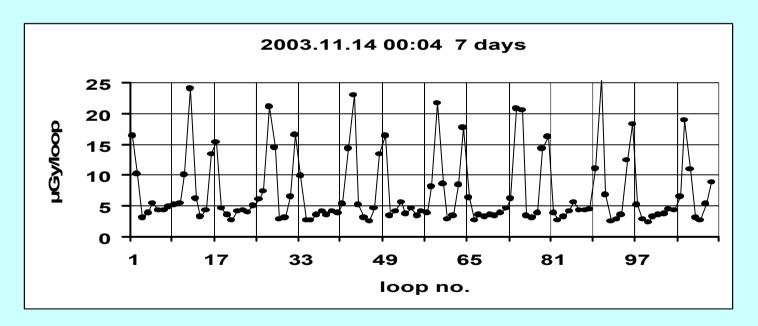
Dose rates of the single dosimeters

Readouts: 2003.12.12, 2004.01.14 and 2004.02.09

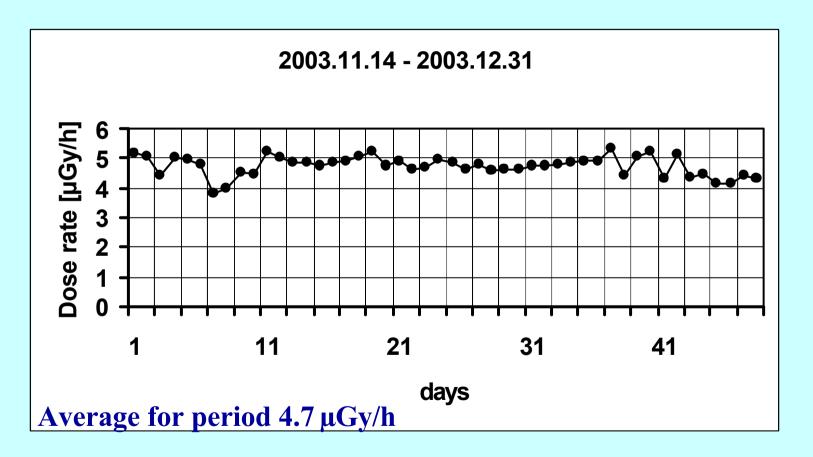
Average: $\sim 6.5 \text{ mGy/h}$

Chronology of the measurements

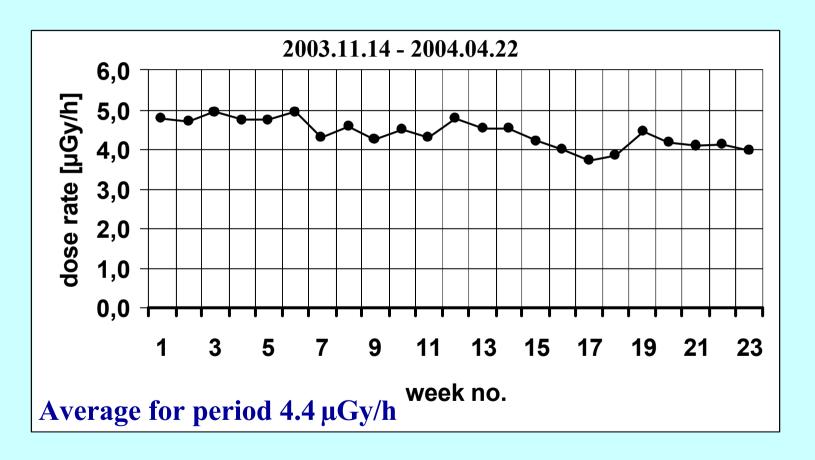
- 2003.10.28 2003.11.07 (11 days)
 - frequent readouts (twice daily) because of extreme solar activity
 - Nº ? 0304, A0307, A0308 and ? 0309 dosimeters were used
 - Nº A0307, A0308 used as personal dosimeters of the cosmonaut/astronauts
- 2003.11.13 2004.04.24 (5 months)
 - regular (monthly) readout of all dosimeters (except № A0308)
 - Nº ? 0308 dosimeter read out every 1.5 hour automatically
- 2004.02.25 (17:23) / 2004.02.24 (10:44) GMT
 - prior and post readouts of EVA (duration of 3 hours 55 minutes)
 - Nº A0309, A0310 personal EVA, Nº A0309 reference dosimeters


7-days sample of automatic measurements

Starting of readouts: 2003.11.14 00:04


Periodicity: 1:30 (90 minutes @ orbital time)

Interval of readouts: ~ 7 days Avarage dose rate total: 4.9 µGy/h


Avarage dose rate untrapped: 4 μGy/orbit, 2.7 μGy/h

Daily dose rates

Weekly dose rates

· Sample from an increased solar activity period

- time interval: 2003.10.29-30

avarage dose rate: 15.5 μGy/h

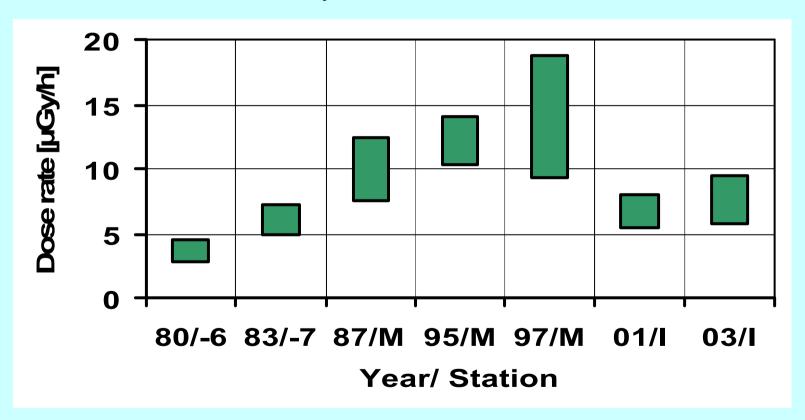
• Dose measurement during EVA (2 astronauts)

- start of EVA: 2004.02.26 21:17 GMT

- end of EVA: 2004.02.27 01:12 GMT

duration: 3 hours 55 minutes

- dose rate: $38 \mu Gy/h$ and $52 \mu Gy/h$


Location of the 'Pille' TLDs on the 'Orlan' spacesuit during EVA

September 8-10, 2004

WRMISS-9, Vienna

Comparing dose rates measured by 'Pille' on different Space Stations

Salyut-6, -7, Mir, ISS

Special thanks to

Yuri Malenchenko

Commander of ISS Expedition 7

for installing and starting up the 'Pille-MKS' system successfully

Alexander Kaleri

Board Engineer of ISS Expedition 8

for operating the 'Pille-MKS' system during half a year so outstanding

Thank you for your attention!

PNTD Measurements

LET_¥H₂O ³ 10 keV/mm

TLD correction:
Efficiency +
High LET contribution

ISS dosimeter + CR-39 PNTD-s (x-y-z)

Combined data

- 12 μ Gy/h \Rightarrow 25 μ Sv/h Mir
- $8 \mu Gy/h \Rightarrow 16 \mu Sv/h ISS$

- On-board TLD system is applicable for measurement of
- Dose map and personal dose
- EVA dose
- Trapped and Untrapped Dose Components
 <u>but PNTD</u> or other LET measurements are
 necessary for dose equivalent determination
 + phantom for effective dose evaluation

ISS / DOSMAP / 2001

Location of TLD-PNTD kits

Dosimeter	Location	Orientation
A0102	Node 1 (combined with	Zenith area of aft hatch, opposite of
	MDU1 and NTDP4.F	US Lab
A0103	US Lab	Any axis on BBND
A0104	Node 1	Zenith area of forward hatch
A0105	Node 1	Zenith area of starboard hatch
A0106	Node 1	Port side close to US Lab
A0107	US Lab (combined with	Opposite end of lab from Ku Band
	NTDP5.F and MDU 4)	on Zenith area of aft hatch
A0108	Node 1	Nadir area on forward hatch
A0109	US Lab	Seat track on starboard side of US
		Lab close to forward hatch
A0110	US Lab	Seat track on starboard side of US
		Lab close to aft hatch
A0111	US Lab	Seat track on port side of US Lab
		close to forward hatch
A0112	US Lab	Seat track on port side of US Lab
		close to aft hatch