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remarked as one of the major contributors to astronaut dose.

A Bonner Ball Neutron Detector (BBND) experiment was 
conducted for about 8 months in 2001 on the US Laboratory 
Module of the International Space Station (ISS), as part of 
the science program of NASA's Human Research Facility 
(HRF), in order to evaluate the neutron radiation 
environment inside the ISS.

In this presentation, results from the BBND experiment is 
reported.
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2. Bonner Ball Neutron Detector
The BBND sensor consists of six 3He proportional 

counters covered with polyethylene moderators of various 
thickness and gadolinium eliminators.

Each counter has different energy response function for 
incident neutron, which is obtained by irradiation 
experiments with numerical calculations.
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3. Measurements

The BBND instruments 
was once relocated on 
9th Aug. as during the 
experimental period.

Energy Range : Thermal (0.025eV) – 15MeV

Measurement Period :

23rd Mar. through 15th Nov. 2001 for about 8 months

corresponding to solar-activity maximum period

Altitude variation : 369km – 415km Average 394km

Evaluation of neutron 
radiation environment 
under different shield 
conditions
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Differential Energy Spectrum

Thermal (0.025eV) – 15MeV 22bin

Unfolding method 

Armstrong’s albedo neutron data as an initial guess

1-minute
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Dose-Equivalent

ICRP-74

conversion coefficient



5. Dose-Equivalent Rate Variation 
Average dose-equivalent rate 85µSv/d (before relocation)

109µSv/d (after relocation)

? 30% increase due to relocation even between the 
regulated racks for experimental instruments
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5. Dose-Equivalent Rate Variation
The lower boundary of dose-equivalent rate variation

? on orbits which do not pass through SAA region

The envelope of upper boundary

? due to altitude variation in SAA region

These spikes in April 
and November were 
caused by large solar 
flares associated with 
proton event.
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The whole aspect of dose-equivalent rate distribution is 

due to geomagnetic cut-off rigidity distribution except in 
SAA region.

? GCR contribution and trapped-proton contribution to 
dose-equivalent rate can be handled separately.
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Two relations to describe dose-equivalent rate distribution

+

Geomagnetic cut-off rigidity distribution calculated by 
CREAM86 code

+

Trapped-proton integrated flux distribution (10-400MeV) 
calculated by AP-8 MAX code

?

Altitude dependence of dose-equivalent rate is briefly 
estimated.  

8. Altitude Dependence of Dose-Equivalent Rate



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Geomagnetic cut-off rigidity and trapped-proton integrated 
flux are calculated from altitude of 300km through 500km 
in each 10km step. Each dose-equivalent rate distribution is 
estimated separately, and summed at final.



8. Altitude Dependence of Dose-Equivalent Rate
Dose-equivalent rate increases two times from 300km to 

500km, which is smaller than that for charged particles, 
because…



8. Altitude Dependence of Dose-Equivalent Rate
Dose-equivalent rate increases two times from 300km to 

500km, which is smaller than that for charged particles, 
because…

Trapped-proton contribution rapidly increases.

GCR contribution is almost same.  



8. Altitude Dependence of Dose-Equivalent Rate
Dose-equivalent rate increases two times from 300km to 

500km, which is smaller than that for charged particles, 
because...

Trapped-proton contribution rapidly increases

GCR contribution is almost same

The ratio of GCR 
contribution to trapped-
proton contribution through 
the BBND experiment is 
about 3, which is higher than 
that for charged particles.
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9. Influences of Solar Phenomena
An energetic flare and coronal mass ejection (CME) 

occurred on 4th Nov. 2001, which caused largest influences 
on the radiation environment on the ISS orbit during the 
BBND experiment.

The solar x-ray flux and the 
energetic proton flux 
observed by the GOES 
satellite at geo-stationary 
earth orbit show that about a 
few hours after the solar 
event occurrence, the large 
geomagnetic storm  begun
and continued for a few days.
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The whole influences of this 
solar phenomena is evaluated 
to be 0.19mSv. 

This was less than 1% of 
annual dose-equivalent of 
34mSv estimated by the 
average dose-equivalent rate.

9. Influences of Solar Phenomena
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10. Conclusion
The BBND experiment was successfully conducted for 

about 8 months in 2001 on the US Laboratory Module of the 
ISS. Based on the obtained data, the neutron radiation 
environment inside the ISS can be evaluated.
The average dose-equivalent rate 85µSv/d (before 

relocation) and 109µSv/d (after relocation). By using two 
relations of geomagnetic cut-off rigidity and trapped-proton 
integrated flux with dose-equivalent rate, its altitude 
dependence from 300km through 500km is briefly estimated.
The most influenced solar phenomenon during the BBND 

experiment was the solar flare associated with the CME
occurred on 4th Nov. 2001, the whole influence of which 
was 0.19mSv, less than 1% of annual dose-equivalent.


