Results from recent ground based (HIMAC) and space (ISS) exposures using TL and OSL dosimeters

Ramona Gaza, Olivier Goossens, <u>Stephen W.S.</u> <u>McKeever</u>, Eduardo G. Yukihara and Filip Vanhavere

Department of Physics, Oklahoma State University 145 Physical Sciences II, Stillwater, OK 74078-3072, USA and SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium

Introduction

• Dose equivalent:

$$H = \sum_{i} H_{i} = \sum_{i} D_{i} \times Q_{i}$$

• NCRP 142, 2002 Recommendation 11:

 $H = QD_{OSLD/TLD} + \int Q(L) D_{PNTD}(L) dL$ LET ≤ 10 keV/µm; Q = 1 LET ≥ 10 keV/µm; Q = Q(L)

Evaluate the potential of OSL from Al_2O_3 :C for dose determinations in low-LET region

Experimental details

<u>Material</u>: LuxelTM (Al₂O₃:C powder in polycarbonate film); Al₂O₃:C chips <u>HIMAC irradiations (ICCHIBAN 4)</u>

- 'Known-ion' exposures: ⁴He, ¹²C, ²⁰Ne, ²⁸Si, ⁵⁶Fe; energies of 600 MeV – 2.8 GeV; doses of 1, 10, 50 and 100 mGy
- 'Unknown-ion' exposures: single and mixed field ions

Space Irradiations

 MESSAGE 2 (10 days) and MOBILIZATION (11 days) & BRADOS (91.5 days)

OSL measurements

- The experiments were performed in CW-OSL mode using a Risø TL/OSL-DA-15 reader
- Stimulating light: green diodes (525nm), U-340 filters
- OSL signal: Integral OSL (300 s) and Initial Intensity (3 s)

Known radiation fields: Efficiency vs LET

- We measure "equivalent" gamma dose D₂ from the OSL signal
- Absorbed dose is obtained by correcting D₂ by efficiency ?

Unknown mixed radiation fields

Absorbed dose

$$D = \sum_{i} D_{i} = \sum_{i} \frac{D_{g,i}}{h_{i}}$$

• But we measure

$$D_g = \sum_i D_{g,i} = \sum_i h_i D_i$$

Question:

• Can we calculate a 'mean' efficiency, such that:

To calculate a "mean" efficiency:

What parameters of the OSL decay curve depend on LET ?

(1) R- Ratio:

$$R = \frac{D_g(area)}{D_g(I_0)}$$

(2) *t* -Ratio:

$$I_{OSL} = \sum_{k} A_{k} \exp\left(-\frac{t}{t_{k}}\right)$$

Ratio of t_1 by t_2 from an exponential fit of the OSL decay curves $t = t_1/t_2$

Estimation of the 'mean' efficiency' by R- ratio method

Estimation of the 'mean' efficiency' by t - ratio method

Results I: Absorbed dose

'Unknown-ion' exposure	Measured dose (mGy)	Integral OSL (mGy) R-method	Integral OSL (mGy) t - method	Actual dose (mGy)
Unknown #1	31.0 ± 0.2	29.2 ± 0.3	28.5 ± 0.3	27.8
Unknown #2	26.2 ± 0.0	26.0 ± 0.1	25.3 ± 0.4	25.0
Unknown #3	13.4 ± 0.0	12.6 ± 0.1	12.5 ± 0.2	12.6
Unknown #4	$\textbf{8.4}\pm\textbf{0.1}$	8.7 ± 0.3	11.2 ± 1.0	10.2
Unknown #8	20.8 ± 0.2	24.8 ± 0.7	25.4 ± 1.3	25.0

Example results from ICCHIBAN 4 (doses to water, using "blind" identities revealed by Benton)

Results II: Dose equivalent

`Unknown-ion' exposure	Dose equivalent H (Sv)	Corrected dose equivalent t- method
Unknown #1	27.8	28.5 ± 0.3
Unknown #2	25.0	25.3 ± 0.4
Unknown #3	20.4	$12.5\pm\ 0.2$
Unknown #4	64.9	35.7 ± 1.0
Unknown #8	33.0	25.4 ± 1.3

Results III: MESSAGE & MOBILIZATION Multiple TLD/OSLD types: Example data

	ISS –7 (containers) Dose rate (µGy/d)
Al ₂ O ₃ :C (OSL)	162 ± 3
Al ₂ O ₃ :C (OSL)	165 ± 2
⁷ LiF:Mg,Ti (TL)	194 ± 17
⁷ LiF:Mg,Cu,P (TL)	154 ± 4
⁷ LiF:Mg,Cu,P (TL)	154 ± 12
Al ₂ O ₃ :C (TL)	178 ± 14

 7 LiF:Mg,Ti (TL) > Al₂O₃:C (TL) > Al₂O₃:C (OSL) > 7 LiF:Mg,Cu,P (TL)

Results III: MESSAGE & MOBILIZATION (cont.)

Efficiencies

LET [keV/µm] Nom. Value	⁷ LiF:Mg,Cu,P	⁷ LiF:Mg,Ti	Al₂O₃:C (OSLD)	Al ₂ O ₃ :C (TLD)
2.26	0.78	1.12	0.83	0.89
10.8	0.51	0.92	0.53	0.56
55.5	0.32	0.55	0.33	0.37
189	0.29	0.45	0.3	0.32

Same ordering:

 7 LiF:Mg,Ti (TL) > Al₂O₃:C (TL) > Al₂O₃:C (OSL) > 7 LiF:Mg,Cu,P (TL)

PNTD data show that >95% of the OSL/TL signal from low-LET **Results IV: BRADOS**

(in mGy)

Results IV: BRADOS (cont.)

Al₂O₃:C - OSL

Layer (detector #)	'Corrected' dose (mGy) <i>R</i> -method
#1	18.6 ± 1.0
#2	16.6 ± 1.4
#3	17.0 ± 2.8
#4	15.9 ± 4.9
#5	18.5 ± 1.7
#6	16.1 ± 0.4
#7	17.0 ± 1.0
#8	14.9 ± 0.7
#9	15.2 ± 1.9

LiF:Mg,Ti - TL

Layer (detector #)	'Corrected' dose (mGy) <i>HTR</i> -method
#1	22.7 ± 0.5
#2	22.2 ± 0.6
#3	22.3 ± 0.4
#4	20.7 ± 0.5
#5	21.0 ± 0.9
#6	20.5 ± 0.9
#7	19.9 ± 1.1
#8	19.9 ± 0.1
#9	19.8 ± 0.4

Weighted average LET = 0.8 ± 0.1

Weighted average LET = 2.5 ± 0.1

Conclusions

- OSL (and TL) measure primarily the low-LET component.
- Differences in evaluated doses are primarily due to differences in <u>low-</u> <u>LET efficiencies</u>, rather than high-LET efficiencies.

• The OSL signal from Al_2O_3 :C using both R-Ratio method and t-Ratio method can be used with good accuracy to estimate the absorbed dose for: (a) unknown low-LET single radiation fields, and (b) unknown mixed radiation fields with a strong low-LET component and a weak high-LET component.

• For increased high-LET contribution to the incident radiation field, the errors in estimating both the absorbed dose and (especially) dose equivalent increase.

Acknowledgments

• Dr. Yukio Uchihori and Dr. Eric Benton for assistance with the 2nd ICCHIBAN and 4th ICCHIBAN experiments at NIRS

• Dr. Eric Benton for the opportunity to participate in BRADOS

• NASA Grant NAG9-1332

