MATROSHKA – Results from the exposure inside the Japanese KIBO Module – and comparison with previous missions

Thomas Berger on behalf of the MATROSHKA Team

Radiation Biology Department Institute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany

Knowledge for Tomorrow

MATROSHKA Team

Thomas Berger¹, Michael Hajek², Pawel Bilski³, Tomasz Horwacik³, Monika Puchalska³, Christine Koerner¹, Eduardo Yukihara⁴, Eric Benton⁴, Ramona Gaza⁵, József K. Pálfalvi⁶, Julianna Szabó⁶, Luke Hager⁷, Yukio Uchihori⁸, Hisashi Kitamura⁸, Satoshi Kodaira⁸, Aiko Nagamatsu⁹, Vyacheslav A. Shurshakov¹⁰, Sönke Burmeister¹¹, Lembit Sihver¹², Vladislav M. Petrov¹⁰, Günther Reitz¹

1 German Aerospace Center, (DLR), Cologne, Germany

2 Institute of Atomic and Subatomic Physics, (ATI), Technical University Vienna, Austria

3 Institute of Nuclear Physic, (IFJ), Krakow, Poland

4 Oklahoma State University, (OSU), Stillwater, USA

5 NASA Johnson Space Center, (NASA), Houston USA

6 Centre for Energy Research of the Hungarian Academy of Sciences (formerly AERI), Budapest, Hungary

7 Health Protection Agency (HPA), Chilton, United Kingdom

8 National Institute for Radiological Sciences, (NIRS), Chiba, Japan

9 Japan Aerospace Exploration Agency, (JAXA), Japan

10 Institute for Biomedical Problems, (IBMP), Moscow, Russia

11 Christian Albrechts Universität zu Kiel, (CAU), Kiel, Germany

12 Chalmers University of Technology, (CHALMERS), Gothenburg, Sweden

CONTENT

- Overview of the MATROSHKA Experiments
- Results : MATROSHKA in KIBO : MTR-2 KIBO
- Comparison with other MATROSHKA Experiment Phases : MTR-1 MTR-2A

MTR-2B

Radiation Measurements

Area monitoring (DOSIS-3D)

Phantom experiments (MATROSHKA) Personal dosimetry (EuCPD)

The MATROSHKA Experiment Facility

More than 6,000 passive radiation detectors

Over 1,600 measurements sites in a regular 2.5 cm x/y/z grid

Seven active radiation detectors

(A): The urethane-based phantom body of the MATROSHKA facility; (B): dressed with a Nomex[®] skin substitute, aka hood and poncho; (C): A carbon fibre container thermally protected by a multilayer insulation (D), resembles the shielding properties of an EVA spacesuit.

Polyethylene tubes containing luminescence detectors are accommodated in a regular grid throughout the phantom body. Organ detector boxes and silicon scintillation detectors monitor the doses at the sites of selected organs, as shown for (A) the eye; (B) the lung and (C) the stomach.

NTDP #	Slice #	Organ		
1	3 Eye			
2	15	Lungs		
3	20	Stomach		
4	22	Kidney		
5	27	Intestine		
6	_	Top of head		

Skin doses are measured on the phantom's surface by means of sewn-in dosimeter strips and dedicated poncho detector boxes (A): mid thorax, upper abdomen; (B): lateral left; (C): lateral right; (D): mid dorsal and lumbar

MTR-1: 2004 - 2005

MTR-1 (2004-05) 539 days

Experiment phase	Event	Date		
	Launch of MTR with Progress 13P	29 January 2004		
	Docking with ISS	31 January 2004		
MTR-1 (2004-2005)	EVA	26 February 2004		
	Activation of active instruments	April 2004		
	Outside exposure: 539 Days	26 February 2004 – 18 August 2005		
	EVA	18 August 2005		
	Dismounting of passive detectors	14 September 2005		
	Detector download with Soyuz	11 October 2005 (landing)		

Experiment phase	Timeline	Days
MTR 1 (2004–2005)	Total Time of the experiment	616
	EVA Time	539
	Detectors inside the ISS	77

MTR-1: 2004 - 2005

(A): MTR-1 extravehicular exposure at the outer surface of the ISS Russian Service Module (Zvezda); (B): EVA for phantom removal; (C): Detector disintegration by Expedition 11 Commander Sergei K. Krikalev (left) and Flight Engineer John L. Phillips

Experiment

phase

MTR-2A: 2006

Event

20P)

MTR-2A (2006)

337 days

Integration of passive detectors 5 January 2006 MTR-2A 5 January 2006 -**Inside exposure: 337 Days** 7 December 2006 (2006) Dismounting of passive detectors 7 December 2006 Passive detector download (STS-22 December 2006 116) Experiment Timeline Days phase Total exposure time 367 **Inside exposure I = Detectors** inside or mounted on the MTR 337 MTR-2A facility (2006)Inside exposure II = Detectors inside, but not mounted on the 30 MTR facility

Passive detector upload (Progress

Date

21 December 2005

MTR-2A: 2006

(A) and (B): detector integration for MTR-2A; (C): MTR-2A intravehicular exposure in the ISS Russian Docking Compartment (Pirs); (D): Detector removal by Expedition 14 Flight Engineer, ESA astronaut Thomas Reiter

MTR-2B (2007-09) 518 days

MTR-2B: 2007 - 2009

Experiment phase	Event	Date			
	Passive detector upload (Soyuz TMA- 11)	Oct. 10, 2007			
	Integration of passive detectors	Oct. 18, 2007			
MTR-2B (2007–2009)	Inside exposure (active, passive detectors)	Oct. 18, 2007– March 18, 2009			
	Dismounting of passive detectors I	Nov. 25, 2008			
	Passive detector download I (STS-126)	Nov. 30 2008			
	Dismounting of passive detectors II	March 18, 2009			
	Passive detector download I (STS-119)	March 30, 2009			
Experiment phase	Timeline	Days (I) Days (II)			
	Total exposure time	417	536		

phase	limeline	Days (I)	Days (II)
MTR-2B (2007–2009)	Total exposure time	417	536
	Inside exposure I = Detectors inside or mounted on the MTR facility	402	518
	Inside exposure II = Detectors inside, but not mounted on the MTR facility	12	18

MTR-2B: 2007 - 2009

(A) and (B): MTR-2B intravehicular exposure in the ISS Russian Service Module (Zvezda); (C): Detector disintegration by Expedition 18 Flight Engineer Yury V. Lonchakov

MATROSHKA: From "Russia" to "Japan"

MTR-2 KIBO: 2010 - 2011

The MATROSHKA 2 KIBO space experiment was conducted under

'ESA/ROSCOSMOS and JAXA Payload Integration Agreement (PIA) for MATROSHKA'

approved on 19 August 2009 and revised on 2 September 2010, as part of Kibo utilization framework.

MTR-2 KIBO: 2010 - 2011

ISSO23EO	• GLAS •	
31581		
	A San	
	1	

MTR-2 KIBO (2010-11) 310 days

Experiment phase	Event	Date	
MTR-2 KIBO (2010 - 2011)	Passive detector upload (Progress 37P)	April 28, 2010	
	Integration of passive detectors	May 04, 2010	
	Inside exposure (passive detectors)	May 04, 2010– March 10, 2011	
	Dismounting of passive detectors	March 10, 2011	
	Passive detector download (Soyuz 24S)	March 16, 2011	

Experiment phase	Timeline	Days
MTR 2 KIBO (2010–2011)	Total Time of the experiment	322
	Detectors inside the MATROSHKA	310
	Detectors inside the ISS	12

MTR-2 KIBO: 2010 - 2011

(A): MTR-2 KIBO detector integration (May 2010); (B): MATROSHKA exposure inside the KIBO module; (C): MTR-2 KIBO detector disintegration (March 2011)

MTR-2 KIBO: Results

Thermoluminescence detector (TLD) data from:

- Institute of Nuclear Physics, **IFJ**, Krakow, Poland;
- Institute of Atomic and Subatomic Physics, **ATI**, Vienna, Austria
- German Aerospace Center, **DLR**, Cologne, Germany
- Japan Aerospace Exploration Agency, **JAXA**, Tsukuba, Japan

Nuclear Track Etch Detectors (CR-39) data from:

- German Aerospace Center, DLR, Cologne, Germany
- Centre for Energy Research, **EK**, Budapest, Hungary

MTR-2 KIBO: Results

Thermoluminescence Detectors

MTR-2 KIBO: Results / Reference (IFJ, ATI, DLR, JAXA)

Reference: 254 \pm 8 μ Gy

MTR-2 KIBO: Results / Poncho (IFJ, ATI, DLR)

IFJ

Poncho: 234 – 263 µGy/d

MTR-2 KIBO: Results / Poncho (JAXA)

FRONT

BACK

MTR-2 KIBO: Results / Poncho (JAXA)

				265±21	265±17	
242±19			248±12			275±19
		240 ±11		292±21	251±18	
211±13			240±18			249±10

FRONT

BACK

www.DLR.de • Chart 25 > Thomas Berger • 17th WRMISS > September 04-06, 2012 > Austin, Texas, USA

MTR-2 KIBO: Results / NTDP (IFJ, ATI, DLR, JAXA)

NTDP #1 - #5: 195 – 214 µGy/d NTDP #6 : 256 µGy/d

www.DLR.de • Chart 26 > Thomas Berger • 17th WRMISS > September 04-06, 2012 > Austin, Texas, USA

MTR-2 KIBO: Results / Skin (DLR)

www.DLR.de • Chart 27 > Thomas Berger • 17th WRMISS > September 04-06, 2012 > Austin, Texas, USA

MTR-2 KIBO: Results / Skin (DLR)

www.DLR.de • Chart 28 > Thomas Berger • 17th WRMISS > September 04-06, 2012 > Austin, Texas, USA

MTR-2 KIBO: Results / Skin (DLR)

www.DLR.de • Chart 29 > Thomas Berger • 17th WRMISS > September 04-06, 2012 > Austin, Texas, USA

MTR-2 KIBO: Results / 3D Dose Distribution → Discrete

DLR

www.DLR.de • Chart 30 > Thomas Berger • 17th WRMISS > September 04-06, 2012 > Austin, Texas, USA

MTR-2 KIBO: Results / 3D Dose Distribution → Continous

www.DLR.de • Chart 31 > Thomas Berger • 17th WRMISS > September 04- 06, 2012 > Austin, Texas, USA

MTR-2 KIBO: Results / 3D Dose Distribution → Continuous

MTR-2 KIBO: Results

Nuclear Track Etch Detectors

MTR-2 KIBO: CR-39 Results (DLR)

MTR-2 KIBO: CR-39 Results (EK)

LET (keV/µm)

MTR-2 KIBO: CR-39 Results (DLR / EK)

MTR-2 KIBO: TLD + CR-39 Results (DLR)

MATROSHKA: Comparison

MATROSHKA: Comparison I → Reference

MATROSHKA: Comparison II \rightarrow Poncho and NTDP

MATROSHKA: Comparison III \rightarrow Skin

MATROSHKA: Comparison IV \rightarrow 3D Discrete Dose Distribution

MTR-1 (2004-05) MTR-2A (2006) MTR-2B (2007-09)

MATROSHKA: Comparison IV → 3D Discrete Dose Distribution MTR-2B (2007-09) MTR-2 KIBO (2010-11)

MATROSHKA: 6LiF:Mg,Ti $\leftarrow \rightarrow$ 7LiF:Mg,Ti

MTR-2 KIBO: Slice #17 Position #10

MATROSHKA: 6LiF:Mg,Ti ← → 7LiF:Mg,Ti

MATROSHKA: Comparison VI \rightarrow 3D Dose Distribution (continuous)

www.DLR.de • Chart 63 > Thomas Berger • 17th WRMISS > September 04-06, 2012 > Austin, Texas, USA

www.DLR.de • Chart 66 > Thomas Berger • 17th WRMISS > September 04-06, 2012 > Austin, Texas, USA

Summary

- 3D Dose Distributions have been accomplished at four different places in- and outside the ISS (Russian and Japanese Modules)
- Clear distinction between the exposure places in the depth dose distribution in connection with the various shielding locations
- Clear distinction also in the readings of the 6LiF:Mg, Ti and 7LiF:Mg, Ti detectors based on the different local shielding environments
- Highest dose inside the ISS for the exposure in the Japanese KIBO Module
- Comprehensive database as input for radiation transport calculations / benchmarking of radiation transport codes
- Organ dose and organ dose equivalent results resulting in effective dose values of: MTR-1: 0.7 mSv/day (outside ISS) and MTR-2A: 0.53 mSv/day and MTR-2B: 0.57 mSv/day (inside ISS)

Acknowledgements

- All the astro- and cosmonauts working with the MATROSHKA experiment
- Extensive scientific exploitation of data was made possible through the funding by the European Community's 7th Framework Programme (FP7) under Contract No. 218817 HAMLET <u>http://www.fp7-hamlet.eu</u>

Backup

MTR-2 KIBO: CR-39 Results (DLR / EK)

MATROSHKA: Comparison → Minimum Distance (MTR-2A)

MATROSHKA: Comparison → Minimum Distance (MTR-2A /-2B)

MATROSHKA: Comparison → Minimum Distance (MTR-2A /-2B /2 KIBO)

MATROSHKA-2 KIBO: TLD

DLR

MATROSHKA-2 KIBO: TLD

