

Hungarian Academy of Sciences Centre for Energy Research

FIRST RESULTS OF THE TRITEL SPACE DOSIMETRY TELESCOPE FROM THE MISSION ON BOARD THE BEXUS-12 STRATOSPHERIC BALLOON

B. Zábori^{1,2}, <u>A. Hirn</u>¹, I. Apáthy¹, L. Bodnár³, A. Csőke¹, S. Deme¹, T. Pázmándi¹, and P. Szántó¹

> ¹MTA Centre for Energy Research, Budapest, Hungary ²Budapest University of Technology and Economics, Budapest, Hungary ³BL-Electronics Ltd., Solymár, Hungary

> > zabori. balazs@energia.mta.hu

hirn.attila@energia.mta.hu

The REXUS/BEXUS programme

Cosmic radiation environment in the atmosphere

CoCoRAD experiment setup

>Results

>Outlook

REXUS/BEXUS

Rocket and Balloon Experiments for University Students

- The main goals
- » to increase the interest
- in space sciences and technology
- » to increase the awareness
- of the benefits of rockets and balloons
- for carrying out experiments
- The organizers
- » European Space AgencyEducational Office (ESA)
- » Swedish National Space Board (SNSB)
- » Swedish Space Corporation (SSC)
- » German Aerospace Center (DLR)

BEXUS

Ascent and descent velocity	5 - 8 m/s
laximum expected acceleration	+/ - 25g
Expected outside temperature	-6090 ℃
lission time	2-5 hours
leight	25-35 km

Team CoCoRAD (Hu)

The first Hungarian student team participating the REXUS/BEXUS programme

CoCoRAD experiment

Combined TriTel/Pille Cosmic Radiation and Dosimetric Measurements

Team members:

Balázs Zábori – physics, hardware

Gergely Goldschmidt – software

Zsolt Váradi – electrical engineering

Dosimeters in the CoCoRAD experiment:

1 TriTel three-dimensional silicon detector telescope 10 Pille bulbs (+2 for reference)

Cosmic radiation environment

- Primary component
- » High energy charged particles (GCR, solar wind)
- » Trapped radiation
- Secondary particle production
- Pfotzer maximum ~25 km
- » the region where the secondary particle intensity builds up
- » above: atmosphere density is too low to generate many secondary particles
- » below: atmosphere shielding

Experiment setup

TriTel

parameter	value
effective surface of the detectors (A)	222 mm ²
separation between the detectors in one telescope axis (p)	8.9 mm
geometric factor, G (for one telescope axis in 4π)	5.1 cm ² sr
maximum angle of incidence (for one detector pair)	62.1 °
minimum path length in the detector (depletion layer thickness, w)	300 µm
average path length in the detector (for an isotropic field)	361 µm
maximum path length in the detector (for maximum angle of incidence)	641 μm

LET range for BEXUS TriTel: $0.2 - 100 \text{ keV}/\mu m$ in water

TriTel

Shielding:

- Atmosphere @ ~27 km: ~ 7 g/cm²
- Effective shielding of the hardware: ~0.5-0.6 g/cm²

The axes of the TriTel telescope were aligned as follows:

- X-axis: perpendicular to the zenith direction (balloon was rotating)
- Y-axis: looking to the zenith direction
- Z-axis: perpendicular to the zenith direction (balloon was rotating)

Dosimeters	
Туре:	bulb
Material:	CaSO ₄ :Dy
Dimensions:	φ 20 mm * 60 mm

Reader	
Measuring range (s<10%):	3 μ Gy ÷ 10 Gy (CaSO ₄ :Dy)
TLD Efficiency (ε=1±10%):	$LET_{\infty}(H_2O) < 10 \text{ keV/}\mu\text{m}$
Accuracy (above 10 µGy):	δ < 5%

The BEXUS-12 mission

Pille results

Pille results

Average noise level of the bulbs chosen	$1.4 \pm 0.5 \ \mu Gy$
Mission time	4.3 ± 0.1 h
Time between the read-outs	70 ± 0.5 h
The measured average absorbed dose (flight bulbs)	20.8 ± 1.1 μGy
The measured average absorbed dose (reference bulbs)	5.4 ± 0.1 μGy
The measured average dose rate on ground (ref.)	77.7 ± 1.5 nGy/h
The excess absorbed dose of the BEXUS-12 flight	15.6 ± 1.1 μGy
The average dose rate measured by TriTel	~100 nGy/h
Corrected excess absorbed dose of the BEXUS-12 flight	13. 1 ± 1.5 μGy
The estimated error of the measurements	~ 7-10 %

TriTel time spectra

From the three time spectra: 23400 km ± 1200 km

TriTel results

	The measured absorbed doses [µGy]			
	TriTel X	TriTel Y	TriTel Z	Pille
Ascent phase	14.8 ± 0.8	5.4 ± 0.3	5.5 ± 0.2	-
Float phase (27.6 km)	16.3 ± 2.0	11.5 ± 1.0	11.9 ± 0.3	-
Descent phase	7.4 ± 0.4	2.7 ± 0.1	2.8 ± 0.1	-
Together	38.5 ± 1.8	19.6 ± 1.2	20.1 ± 0.8	13.1 ± 1.5

Pille has low sensitivity to particles with LET higher than 10 keV/µm!

Outlook - 1

TECHDOSE on BEXUS 14 (Sept. 2012)

TRITEL-SURE

TRITEL-SURE experiment is co-funded by the EC project SURE, contract number RITA-CT-2006-026069 and the PECS contract No. 98057.

MTA EK SDL +

Co-investigators: Günther Reitz (DLR) Sönke Burmeister (CAU)

Exp. Launch: Oct-Nov. 2012

TRITEL-RS

TRITEL-RS will be uploaded to the ISS in cooperation with the Institute of Biomedical Problems, Moscow.

MTA EK SDL

Exp. Launch: Febr. 2013

Outlook - 3

Acknowledgement

ESA BEXUS supporting experts:

Helen Page, Olle Persson, Mark Fittock, Mark Uitendaal, Adam Lambert, Paul Stevens, Koen Debeule, Martin Siegl, Dr. Alan Owens

Supporters:

Budapest University of Technology and Economics

MTA Centre for Energy Research Hungarian Space Office BME Space Research Group ESA Educational Office German Aerospace Center Swedish Space Corporation Swedish National Space Board

The BEXUS CoCoRAD experiment was funded by the PECS contract No. 4000103810/11/NL/KML and by the Centre for Energy Research, Hungarian Academy of Sciences.

Thank you for your attention!

szanto.peter@energia.mta.hu hirn.attila@energia.mta.hu