The 17th WRMISS @ Austin, Texas, US Sep. 5, 2012

 Preliminary results of water shielding effect for space radiation in ISS crew cabin by means of passive dosimeters

Satoshi Kodaira^A, R.V. Tolochek^B, I. Ambrozova^C, H. Kawashima^A, N. Yasuda^A, M. Kurano^A, H. Kitamura^A, Y. Uchihori^A,
I. Kobayashi^D, A. Suzuki^D, I.S. Kartev^B, E.N. Yarmanova^B,
I.V. Nikolaev^E, and V. A. Shurshakov^B

- A) National Institute of Radiological Sciences (NIRS), Japan
 - B) Institute of Biomedical Problems (IBMP), Russia
 - C) Nuclear Physics Institute (NPI), Czech Republic
 - D) Nagase Landauer Ltd., Japan
 - E) Rocket Space Corporation, Energia, Russia

* Radiation protection on ISS *

ISS crew is constantly exposed to space radiation

- Daily dose: 0.5 ~ 1 mSv
- Component: Proton, Heavy ions (~Fe)
- Source: Galactic cosmic ray Solar energetic particle Trapped particle
- Effective dose limits (10 yr career) for Astronauts - e.g.) 400 mSv (Female), 700 mSv (Male) for 25 yrs old

(NCRP No.142)

Radiation protection in the ISS

- Dose reduction by the vehicle wall and instruments (~a few g/cm²)
- Current status of radiation protection: "Passive" method
- → A possible "Active" radiation protection should be verified for not only effective dose reduction but also coming long-term missions at Lunar and Mars

(Doke et al., 2001)

* Protective Curtain Project *

- Verification of dose reduction effect with the additional installation of "water shielding"
 - Wipes and towels containing water
 - Stack board consisting of wipes and towels is installed inside like a curtain
 - Additional shielding thickness: ~ 8 g/cm²

Protective curtain design

* Radiation detector

- Passive dosimeter package
- Thermo-luminescence detector (TLD)

Material	Size	Institution
LiF:Mg,Ti	3mmx3mmx0.9mmt	NIRS
LiF:Mg,Ti	5mmøx1mmt	IBMP
CaSO ₄ :Dy	5mmøx1mmt	NPI
Al ₂ O ₃ :C	5mmøx1mmt	NPI

- Plastic nuclear track detectors (PNTD)
- Material: CR-39 (HARZLAS/TD-1)
- Size: 26mmx26mmx0.9mmt
- Institution: Common utilization
- Totally 12 packages were installed

*

* Dose measurement method *

Covering wide dynamic range of LET:

- Dose for LET<10keV/μm is obtained by TLD, while dose for LET>10keV/μm from TLD is removed by CR-39 data
- (2) Dose for LET \geq 10keV/ μ m is obtained by CR-39

* Space radiation exposure onboard ISS

Session#1: Jun. 16, 2010 - Nov. 26, 2010 [163 days]

Session#2: Dec. 15, 2010 - May 24, 2011 [160 days]

Pair	Shielded	Unshielded
А	#001	#002
В	#003	#004
С	#005	#007
D	#006	#008
E	#009	#010
F	#011	#012

Absorbed dose at each location by TLD and CR-39 *

*

* LET spectra - CR-39 *

* Total dose results (LiF:Mg.Ti (NIRS) + CR-39) *

Session#1	Absorbed dose (D)		Dose equivalent (H)		Mean Q
	[mGy]	[µGy/day]	[mSv]	[µSv/day]	(=H/D)
#001 (Shielded)	36.1 ± 1.0	221.6 ± 6.3	100.5 ± 4.7	616.5 ± 28.8	2.8 ± 0.2
#002 (Unshielded)	57.8 ± 2.1	354.6 ± 13.0	150.2 ± 5.9	921.4 ± 35.9	2.6 ± 0.1
#003 (Shielded)	40.3 ± 0.7	247.5 ± 4.6	116.3 ± 4.9	713.3 ± 30.3	$\textbf{2.9} \pm \textbf{0.1}$
#004 (Unshielded)	68.4 ± 0.8	419.6 ± 4.7	208.5 ± 6.5	1279.2 ± 40.1	3.0 ± 0.1
#005 (Shielded)	36.8 ± 1.4	225.7 ± 8.7	89.3 ± 4.5	548.1 ± 27.3	2.4 ± 0.2
#006 (Shielded)	34.1 ± 1.4	209.5 ± 8.7	85.8 ± 4.4	526.7 ± 27.1	2.5 ± 0.2
#007 (Unshielded)	42.6 ± 1.0	261.3 ± 6.3	91.9 ± 4.1	563.6 ± 25.4	2.2 ± 0.1
#008 (Unshielded)	39.0 ± 1.5	239.1 ± 9.3	83.7 ± 4.0	513.2 ± 24.5	2.1 ± 0.1
#009 (Shielded)	35.3 ± 1.2	216.3 ± 7.5	85.5 ± 4.1	524.8 ± 25.4	2.4 ± 0.1
#010 (Unshielded)	53.4 ± 0.9	327.7 ± 5.7	117.4 ± 4.5	720.5 ± 27.5	2.2 ± 0.1
#011 (Shielded)	36.7 ± 0.9	225.1 ± 5.6	84.4 ± 4.0	517.9 ± 24.5	2.3 ± 0.1
#012 (Unshielded)	58.5 ± 3.2	358.9 ± 19.7	150.9 ± 6.3	925.8 ± 38.8	2.6 ± 0.2

Session#2	Absorbed dose (D) Dose equivalent (H)		Mean Q		
	[mGy]	[µGy/day]	[mSv]	[µSv/day]	(=H/D)
#001 (Shielded)	38.5 ± 1.1	240.5 ± 7.0	89.1 ± 4.1	556.7 ± 25.7	2.3 ± 0.1
#002 (Unshielded)	67.1 ± 2.1	419.6 ± 13.2	152.7 ± 5.3	954.6 ± 32.9	2.3 ± 0.1
#003 (Shielded)	38.3 ± 0.9	239.4 ± 5.8	88.1 ± 3.9	550.5 ± 24.6	2.3 ± 0.1
#004 (Unshielded)	67.0 ± 1.8	418.9 ± 11.4	132.6 ± 4.6	828.6 ± 29.1	2.0 ± 0.1
#005 (Shielded)	36.8 ± 0.2	229.8 ± 1.2	72.3 ± 3.2	452.0 ± 20.1	2.0 ± 0.1
#006 (Shielded)	33.4 ± 0.5	209.0 ± 3.3	69.8 ± 3.4	436.2 ± 21.0	2.1 ± 0.1
#007 (Unshielded)	41.4 ± 0.6	258.5 ± 3.9	91.9 ± 4.0	574.2 ± 24.8	2.2 ± 0.1
#008 (Unshielded)	36.0 ± 1.2	224.9 ± 7.6	75.9 ± 3.8	474.4 ± 23.4	2.1 ± 0.1
#009 (Shielded)	38.6 ± 1.0	241.5 ± 6.3	80.0 ± 3.7	500.1 ± 22.8	2.1 ± 0.1
#010 (Unshielded)	52.0 ± 0.7	325.2 ± 4.5	94.7 ± 3.8	592.0 ± 24.0	1.8 ± 0.1
#011 (Shielded)	39.6 ± 0.8	247.5 ± 5.1	94.8 ± 4.1	592.4 ± 25.8	2.4 ± 0.1
#012 (Unshielded)	59.9 ± 1.3	374.4 ± 8.2	114.0 ± 4.3	712.8 ± 26.6	1.9 ± 0.1

* Dose reduction rate

Session#1

С

D

Ε

F

Pair	(Shielded)/(Unshielded)	D [%]	H [%]	
A	#001/#002	37.5 ± 2.9	33.1 ± 4.1	
В	#003/#004	41.0 ± 1.3	44.2 ± 2.9	
С	#005/#007	13.6 ± 3.9	2.8 ± 6.5	
D	#006/#008	12.4 ± 5.0	2.6 ± 7.2	
E	#009/#010	34.0 ± 2.5	27.2 ± 4.5	
F	#011/#012	37.3 ± 3.8	44.1 ± 3.5	
Session#2				
Pair	(Shielded)/(Unshielded)	D [%]	H [%]	
Α	#001/#002	42.7 ± 2.5	41.7 ± 3.4	
В	#003/#004	42.8 ± 2.1	33.6 ± 3.8	

#005/#007

#006/#008

#009/#010

#011/#012

Outside → Inside \leftarrow 00# ,000# 003 #004 Thick glass window #005 #000

Water bags

#010 #012

#008

#000

600∉

.50

Shielding with water bag was effective to reduce dose depending on the location

 21.3 ± 4.9

 8.1 ± 6.3

 15.5 ± 5.2

16.9 + 4.8

- In case of Pairs C and D, since the "Unshielded" packages (#007 and #008) are • actually shielded by the another material (thick glass ~ 4.5 g/cm²), the shielding effect by water bag is seemed to be relatively small compared with the other packages
- Reduction rate of dose equivalent is 15 ~ 44 % (except Pairs C and D) ۲

11.1 + 1.4

 7.1 ± 3.5

25.7 + 2.2

33.9 + 2.0

* Comparison with PHITS calculation *

- T. Sato et al., Cosmic. Res., 49 (2011) 319 reports the reduction rate of dose equivalent as a function of water shielding thickness by PHITS calculation
- Water thickness used in Protective Curtain experiment is roughly ~ 8 g/cm²
- Calculated reduction rate of H is estimated to be ~36% for the water thickness of 8 g/cm²
- Observed reduction rate (15 ~ 44 %) is roughly consistent with the PHITS calculation

More detail and precise simulation based on the experimental condition and set-up is needed

(T. Sato et al., 2011)

- Dose reduction rate for space radiation by the additional installation of water shielding in ISS crew cabin was measured with the passive dosimeter packages consisting of TLD and CR-39 during two different durations (Session#1 and #2)
- Averaged water thickness is roughly ~ 8 g/cm²
- Observed dose reduction rate is ranging from 15 to 44 % in dose equivalent depending on the thickness of shielding
- Calculated reduction rate of ~36% is roughly consistent with the observation
- Properly utilization of protective curtain will effectively reduce the radiation dose for crew living in space station and more long-term mission in the future

- We will analyze the recovered "Session#3 (Dec., 2011~ May, 2012)" detectors
- Session#4 (June, 2012~) is now running onboard ISS
- We will summarize the dose variation and dose reduction effect though totally four Sessions (#1~#4)
- We will compare with precise simulation based on the experimental condition and set-up

* Acknowledgements

- We gratefully thank to all of staff, ISS crews and engineers of Energia and IBMP, for preparing, launching, operating and recovering our detectors
- Detector calibration was performed as a part of accelerator experiments of the Research Project at NIRS-HIMAC. We would like to express our thanks to the staff of NIRS-HIMAC for their kind supports

* Environmental parameters *

* Combination of TLD and CR-39 *

- Response of TLD for LET<10keV/μm is almost constant, while response for high LET is strongly depending on LET
- CR-39 can accurately measure high LET (\geq 10keV/µm) particles
- → Dose for LET<10keV/µm obtained by TLD can be estimated by deducting high LET part using CR-39 data