

Department of Physics University of Houston ADVANCED DOSIMETRY DATA ANALYSIS USING TRACKING INFORMATION FROM PIXEL DETECTORS

M. Kroupa, N. Stoffle, J. Idarraga, A. Bahadori, S. M. Hoang, J. Jakubek, D. Turecek, S. Pospisil, A. Empl, L. S. Pinsky, and E. J. Semones

OUTLINE

Introduction

Problem specification

- Angle & Delta-ray Analysis
- Conclusion and future work

Introduction

UNIVERSITY HOUSTOF

Our goal is to provide as good as possible data which will be used for dosimetry calculations

Department of Physics University of Houston The ultimate goal would be to provide the energy spectra for different particle species which can be found in space radiation

Two tasks – measure energy, identify particle

Department of Physics University of Houston

Medipix pixel detectors

pixels, 55 µm pitch)

Read-out ASIC

chip Medipix2

Medipix2

- 256 x 256 pixels
- Pitch of 55 um
- Based on hybrid technology
- **Developed in CERN**
- Control system (HW&SW) developed at IEAP
- Each pixel analogy of single channel analyzer in integral mode

14 mm

Detector bias

voltage (~100V)

Operation modes of Timepix

Department of Physics University of Houston

Medipix mode counting of incoming particles

Time over threshold (TOT) mode allowing direct energy measurement in each pixel (analogy of 65 k multichannel analyzers with 1000 channels per pixel)

Timepix mode measurement of particle interaction/arrival time

Martin Kroupa

Pixel detector advantage

As with the cloud chamber, the particles interacting with the detector creates tracks which can be investigated We called the track originating from one

Department of Physics University of Houston

particle CLUSTER

Energy measurement

Opposite to cloud chamber we have also, directly dE information

Typical value of threshold, i.e. the minimum detectable energy ~ 4 keV

Typical resolution ~ 2 -4 keV FWHM for energies 5 - 60 keV

Measurement challenges

- Cluster variation (depends on types of ion and velocity)
- Azimuthal direction determination (path in detector)
- Delta-ray existance
- Detector effects
- Bias-voltage variation

Azimuthal, Delta-ray and Detector effects

Department of Physics University of Houston

Azimuthal direction Delta-ray existance Detector effects

1		100		\sim	504	~~~	~~					34
	re-	400	πνιε	ev-2	SUa	egr	ee			43	20	3
							_			112	79	
							8	30		13	81	
						17	27	7			25	15
						10	8					20
32	21					_						15
24	39		_			5	28	33				15
	86	6	3	101	46	70	85	86	73	148	40	9
	12	74	53	62	150	428	485	420	240	133	71	
	32	38	178	216	727	2775	3544	2656	937	231	79	14
	49		96	759	25/	02	210	3208	2811	493	90	34
	44	31	99	584	2570	90	223	2000	2890	476	103	37
		124	192	438	710	2172	2903	2666	618	183	80	11
		78	304	168	167	289	381	321	158	90	35	
		5	66	11	71	83	137	100	73	27		
			90	96	70	55	71	80	219	25		
			43	98	107	12		49	184	4		
				69	106	36					•	
							-					

Bias-voltage variation

HOUSTON

Department of Physics University of Houston The cluster shape depends on the applied bias voltage

We need to optimize the bias voltage for given sensor thickness

Fe-400MeV-100V

5/3/2013

11

Angle calculation

UNIVERSITY &

Department of Physics University of Houston Algorithm using selective removal of external pixels to identify the actual core region, which is used to calculate the projected track length estimate

5/3/2013

Martin Kroupa

12

a

20

ш

N N

Angle determination

		angle of entrance											
ion	Energy MeV/A	0	20	30	40	45	60	75	85				
1H	100	18.64±2.88		30.14±3.37			58.74±1.57	73.93±0.66					
1H	160	18.06±2.67		28.76±3.88		42.56±3.03	57.19±3.28						
4He	100	21.92±2.92		33.48±1.86			59.97±1.28	74.1±0.91					
4He	180			32.66±2.87		46.42±1.85	46.43±1.86						
12C	230	21.7±1.30		25.68±3.77		43.67±1.94	60.91±1.11		86				
12C	400	9.29±7.68		25.76±2.62			60.68±0.82		85				
160	230												
20Ne	600	23.09±1.75	25.61±2.46		40.12±2.09		60.29±1.05		85				
20Ne	600	15.55±4.98											
40Ar	290	25.69±2.11		30.79±3.00			59.51±0.84		85				
40Ar	650	23.05±0.97		30.22±2.33			59.46±0.88		85				
56Fe	400	24.52±1.09		28.34±2.37			59.6±0.88	75.86±0.35					

Explaining small angle error

Department of Physic University of Housto

Error caused by pixel size and different threshold at pixels

5/3/2013

Martin Kroupa

Delta-ray Analysis

Purpose: particle identification -> getting velocity information
Two methods -

skeletonization (image reconstruction based)

Contour analysis looking for the cluster core properties

Department of Physics University of Houston

Delta-ray Analysis

Because of the complex properties of the clusters, simple methods such as erosion will not work properly

5/3/2013

Delta-ray analysis

- We implemented more sophisticated methods
- UNIVER HOUG

level 1, neigbours lvl 2 etc.
Delta-rays begin at endpoints and end at user defined level

Pixel level discrimination – boundary pixels

Conclusion and future work

- HOUSTO
- We are able to precisely identify the entrance angle of the particle and so the path of the particle from the angles > 20 degree
- We are able to identify the delta electrons in the cluster
- The energy measurement is affected by detector effects, this will be suppresed with newer generation of the chip
- We are working on the interpolation algorithm for improving the dE
- We are working on the separation algorithm which will separate two connected clusters
- We are working on the cluster shape algorithms

5/3/2013

Ó

Department of Physics University of Houston

Thank you for your attention!

5/3/2013

Martin Kroupa

19