Calculation of Radiation Exposure Levels in Low Earth Orbit and Beyond

<u>Daniel Matthiä</u>, Alankrita Mrigakshi, Thomas Berger, and Guenther Reitz

Knowledge for Tomorrow

Radiation Biology Department Institute of Aerospace Medicine German Aerospace Center (DLR)

Motivation: GCR model behaviour

A. I. Mrigakshi, D. Matthiä, T. Berger, G. Reitz, R. Wimmer-Schweingruber, Assessment of galactic cosmic ray models, JGR, 2012

Outline

- GCR model
- Comparison to data / ISO model / Badhwar-O'Neill 2010 model
- Estimates of the radiation exposure
 - Interplanetary space
 - Lunar surface
 - ISS orbit
 - MATROSHKA-1
 - Solar minimum / DOSIS / DOSIS 3D

DLR GCR model

- GCR model developed at DLR based on ISO model for particles ranging from 1≤Z≤28 and for periods from 1964
- ISO model, based on sun spot number:

$$\phi_i(R,t) = \frac{C_i \beta^{\alpha_i}}{R^{\gamma_i}} \left[\frac{R}{R + (0.37 + 3 \cdot 10^{-4} \cdot W(t)^{1.45})} \right]^{\Delta_i(R,t)}$$
New Model:

$$\phi_i(R,t) = \frac{C_i \beta^{\alpha_i}}{R^{\gamma_i}} \left[\frac{R}{R + (0.37 + 3 \cdot 10^{-4} \cdot W(t)^{1.45})} \right]^{b \cdot W(t) + c}$$

Solar modulation parameter *W* derived by fitting carbon measurements from ACE and Oulu neutron monitor count rates

Matthiä, D., Berger, T., Mrigakshi A., T., Reitz G., A Ready-to-Use Galactic Cosmic Ray Model, submitted to Advances in Space Research (Under Review)

DLR GCR model

- Modulation is quantified by parameter *W*

D.Matthiae , T.Berger, A. Mrigakshi, G. Reitz, A Ready-to-Use Galactic Cosmic Ray Model, submitted to ASR

GCR model – comparison to ACE iron data

Solar minimum – Dez. 2009

Intermediate modulation – June 2004

Solar maximum - Jan. 2001

GCR model - comparison to experimental data

					relative deviation from experimental data		
Experiment	lon	Energy range [MeV/n]	Year	W	this work	ISO	BO-10
ACE/CRIS	Fe	129.1 - 470.9	2001.05	118.5	8 %	73 %	58%
ACE/CRIS	Fe	129.1 - 470.9	2004.53	76.8	5 %	23 %	7%
ACE/CRIS	Fe	129.1 - 470.9	2009.78	0.0	8 %	23 %	24%
BESS1998	Н	215 – 21.5·10 ³	29 th July 1998	47.1	4%	17%	5%
BESS2000	Н	215 – 21.5·10 ³	10 th Aug. 2000	116.1	16%	120%	34%
BESS1998	He	215 – 21.5·10 ³	29 th July 1998	47.1	9%	9%	5%
BESS2000	He	215 – 21.5·10 ³	10 th Aug. 2000	116.1	12%	59%	24%
HEAO-3-C2	С	620 – 3.5·10 ³	Oct. 1979 – June 1980	88.4	6%	7%	7%
HEAO-3-C2	Fe	800 – 3.5·10 ³	Oct. 1979 – June 1980	88.4	11%	19%	9%

Temporal variation in GCR flux

Temporal variation in GCR flux

Radiation exposure in interplanetary space and low Earth orbit

GCR model comparison

GCR exposure in interplanetary space

GCR exposure using DLR model

- Dose rates using the DLR model are higher with respect to the Badhwar-O'Neill2010
- Dose rates using DLR relative to Badhwar-O'Neill model in Jan 2010:

Dose Quantities	Near-Earth Interplanetary Space	ISS Orbit
dD/dt	~ +28 %	~ +19 %
dH/dt	~ +25 %	~ +20 %

• Increase in dose in Jan 2010 relative to July 1997

Dose Quantities	Near-Earth Interplanetary Space	ISS Orbit	
dD/dt & dH/dt	~ +10-12 %	~ +5-6 %	

Radiation exposure in interplanetary space

Radiation exposure in interplanetary space

S. McKenna-Lawlor, P. Goncalves, A. Keating, G. Reitz, D. Matthiae, Overview of energetic particle hazards during prospective manned mission to Mars, Planet. Space Science, 2012

- Solar Minimum CREME2009
- GCR: Z=1-26, 10 MeV/n 100 GeV/n
- 20 cm radius water sphere
- Absorbed dose rate:
 0.35 0.4 mGy/d
- Dose equivalent rate:
 1.6 0.9 mSv/d
- Mars mission: 400 600 days in deep space 0.36 – 0.96 Sv

Carreer limits at LEO, depending on age: 0.4 – 1.7 Sv (female) 0.7 – 3.0 Sv (male)

Radiation exposure on the moon surface

Radiation exposure on the lunar surface

G. Reitz, T. Berger, D. Matthiae, Radiation exposure in the moon environment, Planet. Space Science, 2012

- Solar Minimum (Dec. 2009)
- GCR: Z=1-26, E=10 MeV/n 100 GeV/n
- Radiation source:
 - Half sphere, radius 2 m
 - Isotropic from above
- Target:
 - ICRP phantom, male
 - 0.5 g/cm² polycarbonate space suit, approximated from NASA-TP-2003-212158, "Analysis of a Radiation Model of the Shuttle Space Suit"
- Moon soil:
 - 10m
 - Atomic composition: 60.3% O, 0.4% Na, 5.1% Mg, 6.5% Al, 16.9% Si, 4.7% Ca, 1.1% Ti, 4.4% Fe; Mare, after J. F. Lindsay "Lunar Stratigraphy and Sedimentology", Elsevier, ISBN 0-444-414443-6 (1976)

Radiation exposure on the lunar surface

- Solar Minimum (Dec. 2009)
- Z=1-26, E=10 MeV/n 100 GeV/n
- Organ absorbed dose rates:
 0.16 mGy/d 0.22 mGy/d
- Organ dose equivalent rates:
 0.44 mSv/d 0.82 mSv/d
- Effective dose rate: 0.6 mSv/d
- Dachev et al., 2001:

0.26 mGy/d in silicon in 200km lunar orbit

Considering shadowing effect and conversion to dose in water:

0.69·1.23·0.26 mGy/d = **0.22 mGy/d**

Radiation exposure at the ISS orbit

MATROSHKA 1

- Outside the space station
- Solar modulation between solar mininmum and maximum (2004-2005)
- Simulation: 1 g/cm² Al spherical shielding
- 20 cm water sphere and NUNDO voxel phantom

MTR-1 (2004-05) 539 days

MATROSHKA 1

- Outside the space station
- Solar modulation between solar mininmum and maximum (2004-2005)
- Simulation: 1 g/cm² Al spherical shielding
- 20 cm water sphere and NUNDO voxel phantom

MATROSHKA - 1 simulated using the NUNDO voxel phantom – AP8min

Solar minimum, Dez. 2009 Ap8-min 350 km, 25 g/cm² Aluminum Absorbed Dose

GEANT4 Trapped protons: $40 \mu Gy/d < dD/dt < 85 \mu Gy/d$ GCR: $85 \mu Gy/d < dD/dt < 105 \mu Gy/d$ DOSTEL1/2, DOSIS (S. Burmeister): SAA:

 $dD/dt = 68 / 80 \mu Gy/d$ GCR: $dD/dt = 150 / 157 \mu Gy/d$

Solar minimum, Dez. 2009

Ap8-min 350 km, 25 g/cm² Aluminum Quality Factor

Solar minimum, Dez. 2009 Ap8-min 400 km, 25 g/cm² Aluminum Absorbed Dose

GEANT4 Trapped protons: $100 \mu Gy/d < dD/dt < 160 \mu Gy/d$ GCR: $85 \mu Gy/d < dD/dt < 105 \mu Gy/d$ DOSTEL1/2, DOSIS 3D (S. Burmeister): SAA: $dD/dt = 131 / 106 \mu Gy/d$ GCR: $dD/dt = 146 / 143 \,\mu \text{Gy/d}$

Summary

- Discrepancies between GCR models and experimental data
- Differences in dose estimations by applying different models
- Dose estimation for an unshielded water sphere by applying the DLR model from solar maximum to minimum:

Dose Quantities	Near-Earth Interplanetary Space	ISS Orbit
dD/dt (µGy/d)	173 – 472	45 – 77
dH/dt (µSv/d)	556 – 1427	139 – 239

- Reasonable agreement between numerical estimates and experiments
- Discrepancies between calculated and measured GCR dose rates at LEO

Thank you for your attention!

