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CRaTER - Overview

* Aboard Lunar Reconnaissance Orbiter.
* Launched July 2009.

* Orbit circularized at 50 km altitude, September
20009.

* CRaTER has been operating successfully for
almost 3 years.

* Basic idea: measure LET from GCR’s and SEP’s at
different depths of tissue.
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Thick detectors (1 mm deep) record AE in silicon from about 100 keV (protons) to
~ 88 MeV (relativistic Si) with saturation at higher AE.

Thin detectors (148 um deep) have low gain in electronics, they do not record
Z=1 or relativistic helium, but Fe is on scale.




Fields of View

* Geometry factors:

D2-D4: 1.91 cm? sr,
half-angle 6 = 15°,
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Fields of View

* Geometry factors:
D2-D4: 1.91 cm? sr,
half-angle 6 = 15°.
D2-D6: 0.62 cm? sr,
half-angle 0 = 8.4°.

* Expect ~ 3x as many

D2-D4 coincidences
as D2-D6.
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CRaTER Operation

* CRaTER records all triggered events.
* Full event records sent down.

* Trigger = hit above threshold in any detector,
i.e., no coincidence requirement.

Thresholds set to be just above noise.
* Large data files — in ASCIl format, ~ 1 GB/day.

A lot of filtering needed (and a lot of disk
space).




Calibration
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Major goal: obtain LET spectra vs. depth from GCR.
Measure dE/dx in silicon, but want to know LET in water.

Stopping protons were used to get PH - AE factors.




Calibration

* Bichsel: “It is known that for low-energy particles
W does depend on particle type and speed...
caution is necessary with the energy calibration

of silicon detectors.”

Calibration with low-energy protons may also be off, if
the W at low energy # W at higher energies.

* Implication: Use high-energy data for calibration,

not low energy.
That means we have to understand effects of
straggling = individual large energy transfers.




Straggling in Thin Si Detectors
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* Often-overlooked point: most probable energy deposit
per unit length is a function of detector depth.

* At high energy, A/ x=a+ b In(x).
* Most probable energy deposit always < average dE/dx.




Straggling in CRaTER Data

* Consider, e.g., D2 vs. D1 3
scatter plot. _ nE

» Select region where S Wb
particles are well- T
measured by both. 0

* |If dE/dx was independent o E
of depth, ratio of AE’s e
would = ratio of depths, 2
1000/148 = 6.76. But find
ratio of 7.22 with nominal B

calibration.
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Matching up Spectra

* Consider dE/dx spectrum using D1/D2 pair with
nominal calibration.

* Recall D2 saturates around 88 keV/um, while D1 has
a full range dE/dx of ~ 2000 keV/um.

D1 takes over at high dE/dx — but how to transition?
» dE/dx distributions don’t match up.

* Predictable from A considerations —element peaks
are shifted to the Iéft in the thin detector (D1).

Initially thought to be a calibration error, but it’s not.
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Recipe for Calibration
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D2 Calibration :
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* Select heavy ions

160

P I
1400

that penetrate entire

stack, with energy

20

deposits in D2-D4-D6
all consistent within GCR Element Peaks
+- 10%.

* |dentify He, B, C, N,
O, Ne, and Mg peaks.

45.00 - y=0.0177x:0.0831
R?* = 0.99966

Most Probable AE (MeV)
8

* Fit slope differs by
~20% from nominal.
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Shielding Analysis - Basic Idea

* Define 0D, = normalized dose reduction (per g
cm2) = (1 -<LET> ../ <LET>, . .)/px where
before and after refer to a target of areal density

OX.
* LBL group did a lot of analysis of CH, shielding
(similar to TEP) with GCR-like beam:s.




Accelerator Data

GCR-like Beams
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 Above 1 GeV/nuc, modest energy dependence.

* For agiven energy, little dependence on species, for
600 MeV/nuc and up.




Multiple Depths of a Material
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Shielding of GCR by TEP

* SelectZ>5in D1-D2.

* GCRs penetrate TEP,
things happen:

Some ions fragment.

Some ions slow down.

Some ions stop.

* Region near 0 in D3-
D4 is very heavily
populated — need to
make a cut, but
where?
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Coincidence Requirements

* We know we have to define an event
sample with coincidences, otherwise we
are dominated by side-penetrating events.

* So, what is a valid coincidence event?

With 6 detectors in 3 pairs, we have many
possible definitions, and all of them contain
implicit selection cuts.




Coincidences and Consequences

* Requiring thin detectors in the coincidence
leaves out Z=1 and Z=2 events. E.g., a heavy ion
fragments in TEP1 and D5 only sees a proton —
do we really want to throw that out?

Maybe we have to, as we will see.

* |If we require D5 and/or D6 we are imposing a
species-dependent energy cut, because ions — or
the fragments they produce — must have enough
range to get through TEP2.
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* As an exercise, select

events with well-
correlated energy
deposits in D2 & D4 (C, N,
O up to Si), then look at
D6.

167k events selected.

Based on geometry,
expect 68% outside D2-D6
cone, should have 0
energy in D6 — but actual
number near 0 is ~ 45%.

Any stopping ions would
increase the expected
fraction of 0’s to > 68%.




Impact of Scruff on Shielding
Analysis

* There are fewer 0’s in D6 than naively expected
because of secondary production, i.e., scruff.
We think most of it is 0-rays.
Took CRaTER Engineering Model to HIMAC to test this
hypothesis, more on that in a second...

* Similarly, events in D2 but outside D2-D4 cone will
produce scruff in D4.

* We cannot distinguish a 0 electron caused by an out-
of-cone ion from a low-LET projectile fragment.

* This makes trouble for the shielding analysis and for
any sensible measurements of LET spectra at depth.




Impact of Scruff on Shielding
Analysis, continued

* The scruff causes us to let in out-of-cone events
with low (but non-zero) LET in the downstream
detectors.

If these events had 0 energy downstream we’d
just exclude them as being out of cone.

These events increase apparent shielding.
Revisiting the definition...

* 0D, =(1-<LET>. / <LET> . .)/px

* We have a good measurement of <LET>,_ .. but
<LET>_. . is strongly influenced by scruff.

after




CRaTER @ HIMAC

* Ran 4 beams to study
systematics : -
H at 160 MeV.
He at 180 MeV/nuc.
Si at 800 MeV/nuc ---->

v < @ 800 MeV/nuc Si
—GEOMELrY

0.7 % 180 MeV/nuc He

Probability of Hitin D6
o

Fe at 500 MeV/nuc. Z: %

* 0-ray production is ¢ .
energy-dependent so - N I AU
we used the highest o 0 a0 o 0 2 0w
energy beam available. Rotation Angle (degrees)

* CRaTER was mounted Clearly see effects of d-ray production
on a rotating stage, data and/or fragmentation in high-energy
taken at ma ny angles. Si beam data, much smaller effect

with lower-energy He beam.
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* Very high values of oD,
when cut value is low —
this includes many out-
of-cone particles that
produce scruff.

Recall polyethylene gave
0D, ~ 0.05 (g cm™?)™L.
TEP should be less
effective than CH,.
* Modeling needed — as
cut value increases, all or

nearly all scruff is
removed, but also valid
fragmentation events.




Conclusions

* Set out to use flight data to validate shielding predictions that
came from accelerator data.

Ended up needing accelerator data!

* Main analysis problem is scruff that cannot be easily
eliminated.

* Can models (GEANT4, PHITS) accurately simulate the scruff?

* Accelerator data should provide good test.

* This is just one of several analyses that can be done with the
CRaTER data — others are easier.

Data published on dose rates, albedo protons from the lunar
surface.

Others remain to be published including SEP fluxes, LET
distributions, shielding analysis, & study of elemental fluxes.

* The CRaTER data set is available via the NASA Planetary Data
System (PDS), or talk to me.




