Determination of the Neutron Component of the Cosmic Radiation Field in Spacecraft using a PADC Neutron Personal Dosemeter

(i) Determination of the neutron component(ii) Response to HZE(iii) Preliminary results of STS measurements

David Bartlett, Luke Hager and Rick Tanner

National Radiological Protection Board

(i) Neutron component

Routine issue NRPB PADC neutron personal dosemeters, electrochemically etched, automatically read

Proton threshold ~ 20 keV μm^{-1} (E_p < ~ 1.5 MeV)

Neutrons + neutron-like interactions of protons

Calibration factor determined for the simulated cosmic radiation neutron field (CERF) at CERN (corrected for difference to field in spacecraft)

Measurements at HIMAC with the NRPB PADC Dosemeter

Etched Track Detector Response Characteristics

Energy Dependence of Response of the NRPB Passive Survey Instrument

	Net tracks per unit	Net tracks per unit
Radiation Field	fluence	effective dose (ISO)
	(cm ² 10 ⁻⁶)	(mSv ⁻¹)
144 keV (PTB)	2.25±0.38 ^(a)	66±11 ^(a)
542 keV (PTB)	14.4±1.3	182±16
1.13 MeV (PTB)	30.3±2	242±16
2.5 MeV (PTB)	41.8±2.3	208±11
5 MeV (PTB)	38.5±1.7	142±6
8 MeV (PTB)	35.3±1.4	119±5
14.8 MeV (PTB)	48.7±2.4	145±7
60.2 MeV (UCL)	53±5	148±14
68 MeV (TSL)	42±13	115±36
95 MeV (TSL)	30±9	75±23
173 MeV (TSL)	20±6	38±11

(a) Statistical uncertainty (s) on instrument reading added in quadrature to total standard uncertainty on fluence.

CERN: top concrete position; neutron monitor, ionization chamber, SSM1, TEPCs (ARCS, ISPN, CIEMAT, SSI)

Calculated Neutron Spectra

Comparison of observed and calculated instrument reading for CERF

Neutron Spectrum	Instrument reading per unit fluence (tracks cm ² 10 ⁻⁶)		Spectrum weighted conversion coefficient (pSv cm ²)		Reading per unit effective dose ISO (tracks mSv ⁻¹)
	Calculated	Measured	H*(10)	E _{ISO}	
Ferrari and Rancati CERF	24.5	27.5 ±0.4 ^(a)	260	238	116

(a) Statistical uncertainty (1σ) on instrument reading

Measured Neutron Ambient Dose Equivalent Rates at Temperate Latitudes (40 – 60^o N)

Altitude	Investigator	Neutron H*(10)	
	Investigator	rate (µSv h⁻¹)	
10.6 km	DIAS	3.2 (0.3)	
(35 000 ft)	USAAR	3.5 (0.8)	
	SSI	3.1 (0.3)	
	NRPB	3.8 (0.5)	
16 km	NRPB	6.7 (0.4)	
(53 000 ft)	DIAS	7.1 (0.6)	
	ANPA	6.1 (0.5)	
20 km	NRPB	8.3 (0.8)	
(67,000 ft)	NASA	8.5	

One standard deviation for repeated measurements

Conclusions from Aircraft Measurement Programme

Good agreement of measured and calculated instrument readings for CERF

Broad agreement with results for other etched track detector systems

Good agreement of in-flight measurements with other systems

NRPB neutron survey instrument calculated E_{ISO} response in cosmic radiation neutron fields

	R _{ΦISO}	$E_{\rm ISO}$ / Φ	R _{Eiso}
	$(\text{cm}^2 \ 10^{-6})$	$(pSv cm^2)$	(mSv^{-1})
STS-36 (Wilson et al)	31.8	304	105
CERF(Rancati and	24.5	238	103
Ferrari)			

(ii) Response to charged particles

- PADC neutron personal dosemeter responds to neutrons plus neutron-like interactions of highenergy protons
- Only responds directly to protons of E_p < about 2 MeV
- Some response to heavier charged particles LET_{200} > about 30 keV μm^{-1} , depending on particle type
- Can, in many cases, distinguish HZE electrochemically etched tracks by second chemical etch

CERF Electrochemical etch

Brookhaven Fe 1000MeV per nucleon – Electrochemical etch

Brookhaven Fe 1000MeV per nucleon – Electrochemical etch + chemical etch

CERF Electrochemical etch + chemical etch

STS 105

HIMAC Japan 2002

Charged particle angle dependence of relative response

	0°	15°	30°	60°	75°	Forward 2π	ISO on body
						(ISO free all)	
⁵⁶ Fe 464 MeV/n	0.90	0.85	0.70	0.30	0	30% to 40%	15% to 20%
²⁸ Si 469 MeV/n	0.50	0.55	0.02	0	0	about 5%	about 2%

(iii) Preliminary results for STS measurements

- Use response data for NRPB passive survey instrument for area passive dosemeter measurements
- Correct for difference in neutron energy distribution using Wilson STS 36 data
- Uncorrected results in good agreement with DIAS dose equivalent measurements
- Preliminary need correction for track fading and ageing

Results of measurements of neutron component on STS-105 and STS-108

STS 105

Detector	Tracks	Linearity Corrected Tracks	Linearity Corrected Net Tracks	Estimated Neutron Tracks ^(a)	Neutron E _{ISO} ^(b) (mSv)
D102035	227	234	201	191	1.6
D102072	228	235	202	191	1.6
D102010	198	203	170	162	1.4
D102036	218	224	191	181	1.5

STS 108

Detector	Tracks	Linearity Corrected Tracks	Linearity Corrected Net Tracks	Estimated Neutron Tracks ^(a)	Neutron E _{ISO} ^(b) (mSv)
D102070	205	210	177	168	1.4
D102057	219	225	192	182	1.5
D102065	243	250	217	206	1.8

(a) There is a large uncertainty at present on the subtraction of the tracks produced by the HZE component, research is in progress. Here 5% of tracks (after linearity correction) has been subtracted.

(b) The dosemeters were issued for about a year. The long-term ageing and fading is being studied.

Application as area passive dosemeter or personal dosemeter

Estimate of neutron component of effective dose 100μ Sv to 100 mSv, but no dose rate information; robust; no power supply; contains no flammable gases; no supervision; relatively small size; well-proven reliable and simple detectors (but full track analysis of PADC detector to get H > 10 keV μ m⁻¹ better option)

Use with

(i) small ionization chamber (DIS?) but absorbed dose not dose equivalent – need Q (w_R ?) or correction factor to get non-neutron component of effective dose (ii) TLD or OSL with correction for charged particle response and for Q (w_R ?)

part of integrated scheme with calculated values of field quantities and effective dose

ACKNOWLEDGEMENTS

The authors should like to thank Yukio Uchihori, N Yasuda, Eric Benton and their colleagues at NIRS, Frank Wissmann, Helmut Schuhmacher and Ralph Nolte at PTB, Alexander Prokofiev, Jan Blomgren, Per-Ulf Renberg and Nils Ollson at TSL, and Marco Silari, Evangelia Dimovasili, Sabine Mayer and Angela Mitaroff at CERN who have helped with these investigations. One of us (DTB) should especially like to thank Graham Stevenson and Manfred Höfert of CERN for many useful discussions on these matters over several years.

Irradiations carried out at the Physikalisch-Technische Bundesanstalt (PTB) were done in association with the European Commission funded ANDO project; those at the The Svedberg Laboratory were supported under the European Commission Research Infrastructure programme and those at the Université Catholique Louvain funded by the European Commission RTD Programme: Nuclear Energy, Euratom Framework Programme V, 1998-2002, Contract N° FIGM-CT-2000-00068