

Development of a Passive Dosimeter for Life Science Experiments in Space (PADLES) in NASDA

Participants of NASDA group

 Hiroko Tawara KEK / NASDA
 Shigeki Kamigaichi, Mitsuyo Masukawa, <u>Aiko Nagamatsu NASDA</u>
 Takayoshi Hayashi WASEDA / NASDA Hidenori Kumagai, Michiko Masaki AES
 Hiroshi Yasuda, Nakahiro Yasuda NIRS

Objective

- Ground performance test
- Applications
- Summary
- **Future Work**

Objective

<u>PADLES for biological samples to confirm</u> <u>biological damage in space</u>

Investigating biological effects due to space radiation and microgravity requires precise measurements of space radiation.

Silkworm

(a) The absorbed dose

- (c) LET distributions of heavy-charged particles in the LET region above 10 keV/ μ m
- (b) The dose equivalent
- (d) Tracking of heavy charged particles for biological samples

Culture cells

Loading to JEM : KIBO

PADLES is located close to biological samples in JEM

PADLES with biological samples

「きぼう」共通実験装置

BEU

TLD-MSO-S (thermoluminescent dosimeters)

Mg₂SiO₄: Tb powder enclosed a pyrex glass with Ar gas (Kasei Optonics industry)

CR-39 (plastic nuclear track detectors)

HARZLAS TD-1 are doped with 0.1%wt NAUGARD 445

(Fukuvi Chemical industry)

Methodology I

(a) The absorbed dose : D_{TLD}

 $D_{\rm TLD} = f M K_{\rm proton}$

(Gy-water)

- *f* : correction factor (fading effects, temperature dependence)
- **M** : TLD reader output,
- **K**_{proton}: the conversion factor for water equivalent absorbed dose

Methodology II

(b) The differential LET distribution : dN/dL (>10keV/mm)

 $\frac{dN}{dL} = \frac{\Delta N}{\Delta L} \frac{1}{TS \ \Omega}$

(particles s⁻¹cm⁻²sr⁻¹ (keV/ μ m)⁻¹)

- DL : range of LET bin (keV/μm),
- **T** : observation time (sec) ,
- **S** : scan area (cm²),
- Ω : solid angle= 2π

Methodology III

(continued)

Q : quality factor. *Q-L relation ICRP Pub.60(1990)

Methodology IV

(mGy)

(c) -1 The total absorbed dose : D_{TOTAL}

$$D_{TOTAL} = D_{\le 10 \, keV \, / \, \mu m - water} + D_{>10 \, keV \, / \, \mu m - water} = (D_{TLD} - \kappa D_{CR-39}) + D_{CR-39}$$
$$= D_{TLD} + (1 - \kappa) D_{CR-39}$$

(c) -2 Total dose equivalent : H _{TOTAL}

$$H_{TOTAL} = D_{\leq 10 \text{keV}/\mu\text{m}-\text{water}} + H_{>10 \text{keV}/\mu\text{m}-\text{water}} = (D_{TLD} - \kappa D_{CR-39}) + H_{CR-39}$$

K: mean TL efficiency for high-LET particles from TLD

(mSv)

Methodology V

(continued)

The mean TL efficiency for high-LET particles of TLD-MSO : *k*

Ground	SPACE
 1997 : Introduction of dosimetric techniques from WASEDA univ 1999 : 2000 : Preparation of TLD reader and CR-39 auto scanning system 	 STS-95 flight experiments (Genetic change induced in human cells in space shuttle experiment) Analysis of STS-95 dosimeter packages
2001~2002 : Performance tests of TLD and CR-39 with heavy ion beams from <u>HIMAC in NIRS</u> 2002~2005	ISS Russian SM flight experiment (Radiation damage test of HDTV CCD device)
: Inprovement of the automatic CR-39 analysis system 2006 ~ : Preparation and test of FM of PADLES	Loading to ISS KIBO with biological samples

***Research project with Heavy Ions at NIRS-HIMAC**

TLD-MSO: Dose and LET response function

160 MeV/n proton exposure storage time : up to 3 months

Exposure/storage at -80°C

Exposure/storage at R.T.

Exposure/storage at 37°C

きぼう

CR-39: Calibration curves at various incident angles

Sample aboard ISS Russia SM 2001/8/21-12/10 (71 days) TD-1 6N-NaOH 65h-etching, x100

Space radiation damage test of the High-Definition TeleVison (HDTV) camera aboard ISS Russian module ZEVEZDA

To investigate white effects in HDTV CCD elements due to HZE particles, test stacks of CCDs sandwiched between CR-39 sheets are used in the ISS Russian SM.

HDTV

PADLES for HDTV CCD L170 × W68 × T19mm

PADLES for ZVEZDA russia

ISS ZVEZDA Russia

Altitude:400km An angle of inclination :51.6度

Launch Schedule			
TLD annealing	2001/6/7	Contol: Ground storage days	186
Launch	2001/8/21	Flight sample: Ground storage days	115
Returan	2001/10/31	Flight sample: exposure days	71
TLD measurement of 10 TLD	2001/12/10		

Absorbed doses rate on ISS ZVEZDA (21Aug.-31.Oct.in 2001)

PADLES0.Russian I.C.0

0.242 mGy/day

Objectives

Space radiation dosimtory for biological experiments

Methodology (TLD&CR-39)

We determine the absorbed dose and dose equivalent for space radiation in the entire LET region by a combination of the CR-39 and TLD-MSO date.

Ground performance tests

We obtained the calibration data using high-energy heavy-ion beams from HIMAC in NIRS.

Applications

PADLES can be applied for personal dosimetory and radiation damage research on electronic devices.

PADLES with biological samples :

- **Manual measurement** \rightarrow several month to year required
- (1 sheet of CR-39:252×189.42 μ m/field、 2.5cm square samples → 約5400 fields/sample)

1 life science space experiments need up to 100 sheets of CR-39

Auto and high-speed scanning system measurement → within two weeks after return

we aim to offer the datas to researchers quickly using the automatic CR-39 analysis system, which in cooperation partnership researchers NIRS

