

Charge Spectrum, Dose Equivalent and Absorbed Dose Investigations on STS-108

D. O' Sullivan¹, D. Zhou¹, E. Semones², W. Heinrich³, E. Flood¹

¹Dublin Institute for Advanced Studies, Astrophysics Section, 5 Merrion Square, Dublin 2, Ireland.
 ²Johnson Space Center, Mailcode 23, 2101 NASA Road 1, Houston, Texas 77058, USA.
 ³Department of Physics, University of Siegen, D-57068 Siegen, Germany.

- Passive Detectors (CR-39) Employed
 - Signals due to short range recoils
 from protons, neutrons and heavy
 nucleus interactions investigated
- Primary and secondary cosmic ray particle tracks identified

The DIAS method of measuring dose equivalent due to cosmic ray primary and secondary nuclei at aircraft altitudes is based on the investigation of short range recoil tracks with high LET values (\geq 5kev/µm).

An etch rate ratio (S) was measured for each event and the relationship between LET values and S was determined by calibrating the detectors with protons and carbon ions over most of the range of LET values observed

LET values were binned and the differential fluence was obtained from

$$\frac{d^{3}n}{dAd\Omega dLET} = \left(2\boldsymbol{p}A\cos^{2}\boldsymbol{d}_{cut}\right)^{-1}\frac{dN}{dLET}$$

The absorbed dose (G_v) is then

$$= 4p \times 1.6 \times 10^{-9} \times \text{LET}_{\infty} \times \text{F}$$

where LET_{∞} is the linear energy transfer (keV/µm) in water at the center of the relevant LET bin and F is the differential fluence in particles cm⁻²sr⁻¹(keV/µm)⁻¹ in the same bin. The integral spectrum is generated by summing the differential spectrum from high to low LET.

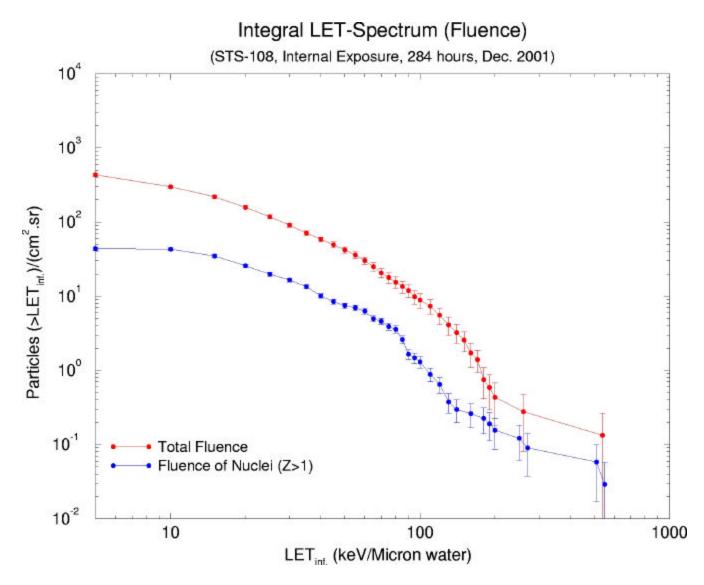
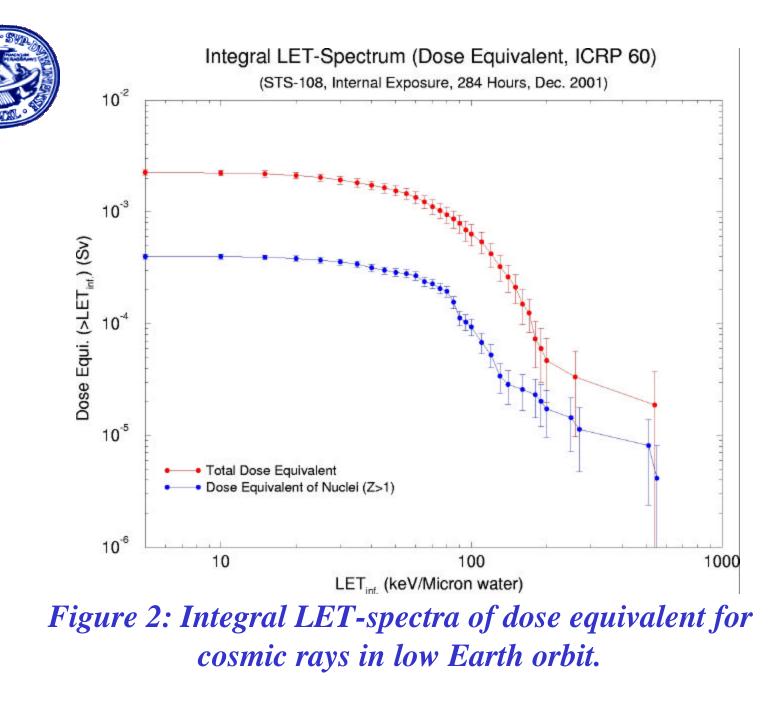



Figure 1: Integral LET spectra of fluence for cosmic rays in low Earth Orbit

Table 1: Comparison of dose rate and dose equivalent rateof cosmic rays for ISS Expedition and STS-108

Mission	Altitude/ Inclination	LET Threshold	Absorbed Dose Rate	Dose Equivalent Rate (ICRP 60)	Quality Factor
Date	Km/Degree	³ KeV/mm water	m Gy/d	m6v/d	
ISS Expedition			26.2	235	8.97
May-Aug 2001	398/51.6°	10	23.8	233	9.79
Benton et al			30.2	240	7.95
Total			29.8	214	7.18
STS-108 - Dec 2001					
DIAS	390/51.6°				
Total		5	17.17	189.94	11.06
HZE		5	2.51	33.60	13.38
HZE		20	2.05	32.35	15.75

Charge Spectrum

The charge spectrum of Z≥2 nuclei was determined for nuclei that stopped in the 1.2 cm thick stack. Investigation of high energy and relativistic particles is continuing. All particles penetrating one or more sheets were noted and followed to the end of their range. HZE particles can be identified by measuring effective etch rate ratio S_{eff} and fractional etch rate gradient G ($g^{-1}cm^{2}$).

Charge Distribution (STS-108)

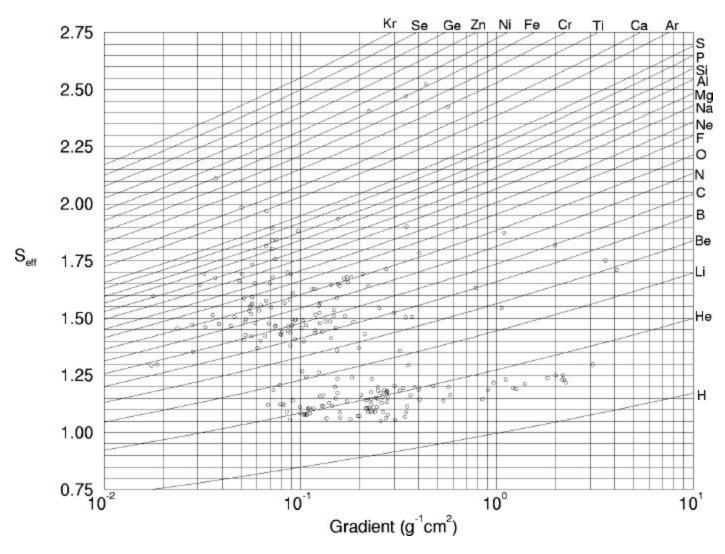


Figure 3: S_{eff} versus gradient for cosmic rays (Z³2) in low Earth orbit

Figure 4: Charge distribution of cosmic rays (Z³2) in low Earth orbit.

Table 2: Energy Intervals for stopping events

Nucleus	Charge	Energy Interval	
		MeV/n	
Не	2	7-27	
Li	3	12-60	
Be	4	15-75	
В	5	18-85	
С	6	20-95	
Ν	7	25-105	
Ο	8	30-120	
Ne	10	35-130	
Mg	12	40-145	
Si	14	45-155	
Fe	26	50-265	

Conclusions

- Assuming shielding of ~20 g/cm² the dose and dose equivalent rates observed on STS-108 were 17 μ Gy/d and 189.9 μ Gy/d, respectively
 - The quality factor (13.38) for HZE ($Z \ge 2$) agrees well with that predicted by (Heinrich, 1977)
- The charge spectrum shows higher abundances in the range ($2 \le Z \le 10$) than those observed in Euromir-94. This may be due to the higher scanning efficiency of the DIAS method
 - The charge spectrum data show very good agreement with results predicted by the Siegen University Model