Development of a Heavy-Ion-Capable Integrated Monte Carlo Transport Code Based on FLUKA, DPMJET and ROOT

University of Houston

Victor Anderson, Anton Empl, Kerry Lee & Lawrence Pinsky

NASA/JSC

Thomas N. Wilson & Neal Zapp INFN-Milan (On Leave, Currently @ CERN) Alfredo Ferrari & Paola Sala

CERN

Rene Brun, Federico Carminati, Alberto Fasso, Endre Futo & Stefan Roesler

Leipzig

Johannes Ranft

WRMISS 2002 - Pinsky

INFN

The Project

FLEUR-S [Fluka Executing Under Root – Space]

This project was initiated by, and has been primarily funded by NASA in order to develop an integrated Monte-Carlo based transport code to be used in the simulation of the Space Radiation environment.
FLUKA was chosen for the basic transport framework, and DPMJET (2.5 & 3) has been integrated into the gode to provide on integrated event

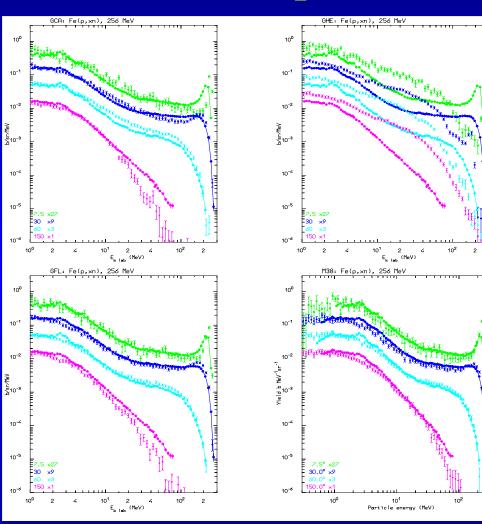
integrated into the code to provide an internal event generator for nucleus-nucleus interactions above 3-5 GeV/A.

FLEUR – S Project Goals

- . . . To provide:
 - a single user-friendly GUI-based environment...
 - employing Monte Carlo techniques...
 - for the simulation of space radiation transport...
 - through realistic 3-D material geometries,
 - including the integrated analysis tools...
 - by using modifications of existing particle physics software codes (i.e. FLUKA & ROOT)

Radiation Transport - FLUKA

- Why use FLUKA?
 - Arguably the best existing integrated physics package. (Based on recent CERN LHC evaluations of existing Monte Carlo codes...)
 - Fully integrated physics in one common code
 - incorporates EGS4-like electromagnetic interactions
 - excellent MORSE-like neutron transport capabilities
 - an Intra-Nuclear Cascade hadronic event generator with pre-equilibrium stage extensions...



FLUKA Comparisons

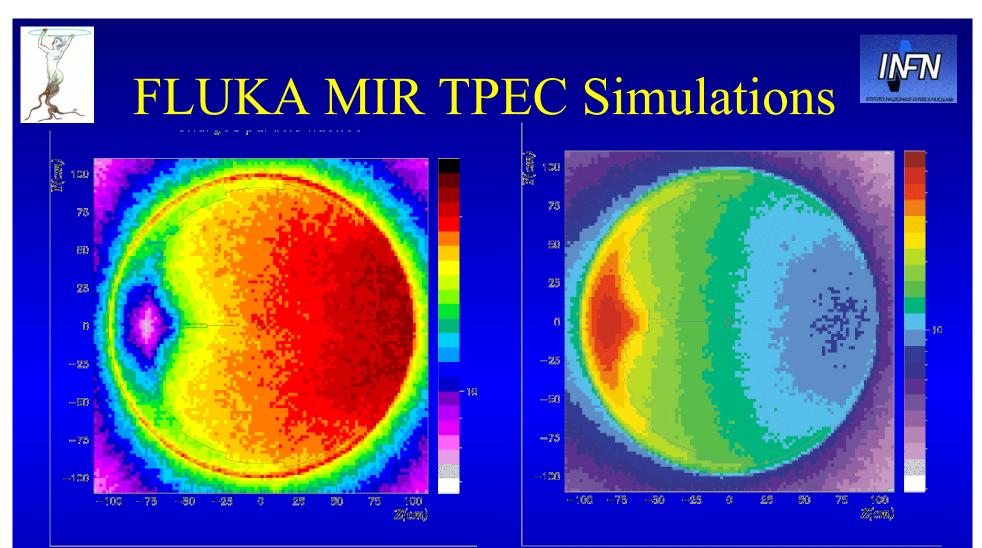
G-Calor

G-FLUKA FLUKA's 10 year old Hadronic generator used in GEANT 3.21

Geisha

Fe(p,xn) (a) 256 MeV $d^2\sigma/d\Omega dE$

🛏 FLUKA



WRMISS 2002 - Pinsky

Independent Comparison by Atlas (CERN/LHC) expt.

Charged Particle Fluences (Note the albedo fluences outside of the phantom...)

WRMISS 2002 - Pinsky

Neutron Fluences

What is ROOT ?

- ROOT is a Complete GUI-based Object-Oriented Data Analysis Infrastructure (Similar to IDL, but more versatile and *FREE*). [http://root.cern.ch]
 - Developed & Maintained at CERN by Rene Brun, Fons Rademakers, Phillipe Canale, Masaharu Goto & Others
- Uses C++ as a Scripting Language
- Powerful Object Oriented Data Structure
- Widely Used in Particle Physics (CERN, BNL, FNAL, JLAB, and in a growing number of non-physics users).

<u>C</u>ancel

/ O 🗆 T 🖉 🛥

_ = ×

Some ROOT GUI "Widgets"

- Select Element/Reaction		— Dialog	\times		— Dialog		
Element: H Hydrogen		Tab 1 Tab 2 Tab 3 Tab 4 Tab 5			Tab 1 Tab 2 Tab 3 Tab 4 Tab 5		
Charge (Z): 1 Atomic Mass: 1.00794 (7) Density: 8.988E-5 Oxidation: +1,-1	Start <u>Filling</u> Hists Stop Filling		Hists		Module 1 0.0	Remove Tab	
Melting Pt (C):-259.34 Boiling Pt (C): -252.87 Isotope (A): 1 Isotope Info: 1/2+ 7.289 99.985%			Const Participa Register Register		Module 2 0.0	Add Tab	
					Module 3 0.0	Remove Tab 5	
Projectile: neutron (n.total) Temperature: 293 Reaction: (2,20) (2,gamma)					Module 4 0.0		
Database: ENDF-B6 (2, gaining) Reaction Info: -							
		<u>Ok</u>	<u>C</u> ancel			<u>O</u> k <u>C</u> ar	
Options Line Width: 1 Vine Color: Black V Marker Style: None V Marker Color: Black V Marker Size: None V ErrorBar Color: Black V	at	s(sin(c).2)	RGuant Data Analysi Elle Edit View Pro Project Macros	ject Ioc	eanse Brawser	<u>X/00</u> 1	
Information Symbol name: 1-H - 1 Laboratory: LANL Evaluation Date: EVAL-OCT89 Author(s): HALE, DODDER, SICILIANO, WILSO		0.0	Monitet insech Manati insech Manati insech Portfolor enkularning Neural stradogies Trading systems	while Int	<pre>Titer mext(AssetList); while (Asset - (TAsset)) ext()) { Int_t LostEntry + Asset-:detEntre()-1; Float_tSMAIL + Asset-:SMA(doder1. TAsset::Price.LastEntr Float_t SMAIL + Asset-:SMA(doder2. TAsset::Price.LastEntr Float_t SMAIL + SMAIL-SMAIL;</pre>		
				Flo	at_t SNA21 = Asset->SNA(Order1, TAsset::k at_t SNA22 = Asset->SNA(Order2, TAsset::k at_t Delta2 = SNA22-SNA21; A_t Hold = kTNUE;	Price,LastEntry-1); Price,LastEntry-1);	
Reference: NO REF TO DATE Distribution Date: DIST-SEP91 Last Revision Date: REV1-JUL91 Master Entry Date: 910806	0.			TSt cha if	 ring Output; # Entry[128]; (Deltal to Delta3) (utput * * '; f (TMshr.%bo(Delta1-Delta2) > 2) (sprint(fintcr, '*-10 - DUT\n',Asset->0etNs Hold + >TAT&ST	ne ()) .	
<u>Ok</u> <u>Execute</u> <u>R</u> eset <u>C</u> lose) ;e	molect s moleces (
			Message Output Command time				
			22507 New macro, Nevi	etSearch C,	added to feider Merizet search		
WRMISS 2002 - Pinsky		NASA					

ROOT-Based Event Display

WRMISS 2002 - Pinsky

AliROOT

FLEUR-S – Major Task 1

- Add Heavy Ion (Nucleus- Nucleus) Interactions to FLUKA
 - > 3 GeV/A Use DPMJET Event Generator *Done (Available)*
 - < 3 GeV/A Long Term Project (NRA 01-OBPR-05)</p>
 - Short Term Solution Use Existing QMD (Quantum Molecular Dynamics) Event Generator Work in Progress—This Year
 - Intermediate Solution Use PEANUT (Pre-Equilibrium Intra-Nuclear Cascade) Generator – Next Year

DPMJET Versions Incorporated

- DPMJET is an implementation of the two-component Dual Parton Model for the description of interactions involving nuclei. It is based on the Gribov-Glauber approach and treats both soft and hard scattering processes in an unified way. Soft processes are parametrized according to Regge-phenomenology whereas lowest order perturbative QCD is used to simulate the hard component. Multiple parton interactions in each individual hadron/nucleon/photon-nucleon interaction which are described by the PHOJET event generator. The fragmentation of parton configurations is treated by the Lund model PYTHIA.
- Particle production in the fragmentation region(s) of the participating nucleus (nuclei) is described by a formation zone suppressed intranuclear cascade followed by Monte Carlo realizations of models for evaporation processes of light nucleons and nuclei, high-energy fission, spectator fragmentation (so far limited to light spectator nuclei) and deexcitation of residual nuclei by photon emission.
- DIS off nuclei is simulated by LEPTO followed by the full intranuclear cascade and fragmentation treatment as mentioned above.
- DPMJET II.5.3 (Johannes Ranft) [Available Now embedded in FLEUR version of FLUKA]
 - http://www.physik.uni-siegen.de/kolloquium/dpmjet
- DPMJET III (Stefan Roesler) [Coming Soon embedded in FLEUR version of FLUKA]
 - http://sroesler.home.cern.ch/sroesler/dpmjet3.html

WRMISS 2002 - Pinsky

MEN

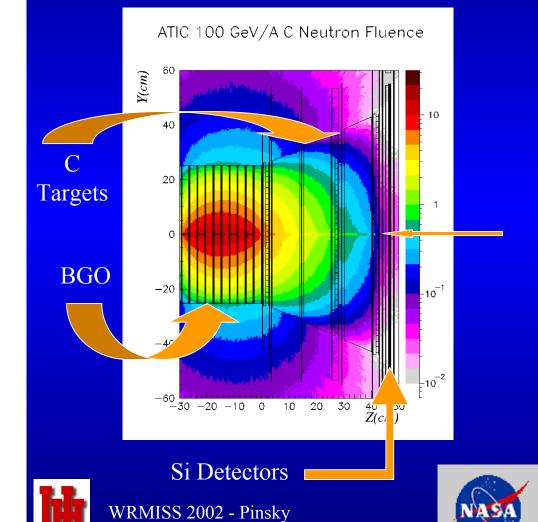
FLEUR-S – Major Task 2

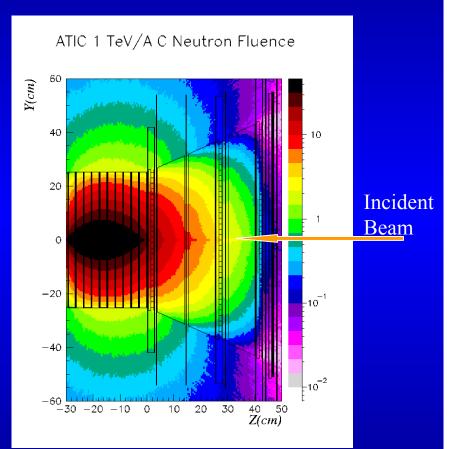
• Provide ROOT GUI Interface

- Input File Creator
 - Short Term Simple Translator This Year (~Now)
 - Long Term Interactive "Smart" Interface- Next Year
- Output Analysis Tools
 - Output Format translator into ROOT data structures This Year
 - Convert Existing FLUKA Analysis Tools Ongoing...
 - Develop New Dedicated Analysis Tools Ongoing...
- Virtual Monte Carlo Interface Ongoing—Next Year

Proposed Major Task 3 (Currently Unfunded by NASA, but expected soon...)

- Provide Easier Geometry Input for Existing FLUKA Geometry...
 - GEANT 3.21 to FLUKA Translator *Done*
 - Add Functionality to Existing FLUKA Geometry (Volume Naming and Logical Parentheses) – *Done*
- Provide New Geometric Modeling Format
 - In Progress by CERN (ROOT) Colleagues...
 - Part of the NRA 01-OPBR-05 Proposed Tasks...




A Simulation of the ATIC Cosmic Ray Balloon Experiment with a Version of FLUKA that has the DPMJET 2.5 Event Generator Built In...

100 GeV/A Incident Carbon

1 TeV/A Incident Carbon

Predicted n fluences from a central C beam incident on the ATIC cosmic ray balloon expt. apparatus

Web Sites...

FLEUR-S <http://www.cern.ch/~fleur>

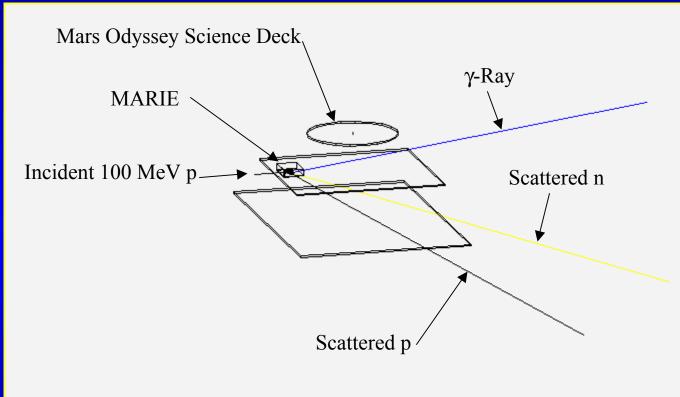
Project status and publications—Downloads soon!

FLUKA <http://www.fluka.org>

Download manuals and software (Linux, Unix,VMS)

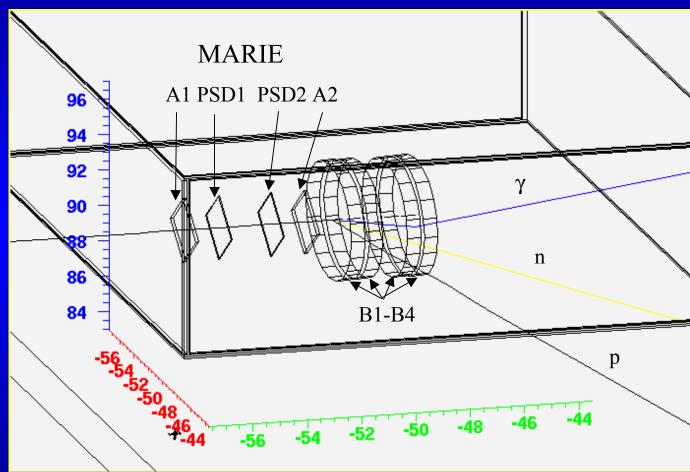
ROOT <http://root.cern.ch>

Download tutorials and software (Linux, Unix, Windows, Mac)

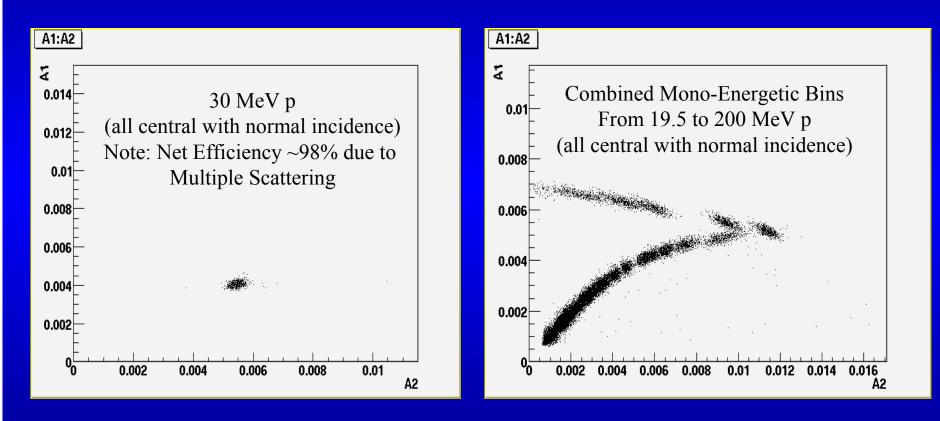


MARIE Simulation with FLEUR-S

New ROOT Visualization Tools Using MC Geometry



Zoomed and Rotated View of Event from Previous Slide



MARIE A1 vs. A2 from FLEUR-S Simulation

More to Come Soon...

