Lighting FIRES – Full Interplanetary Radiation Environment Simulation

W. Schimmerling and F. A. Cucinotta

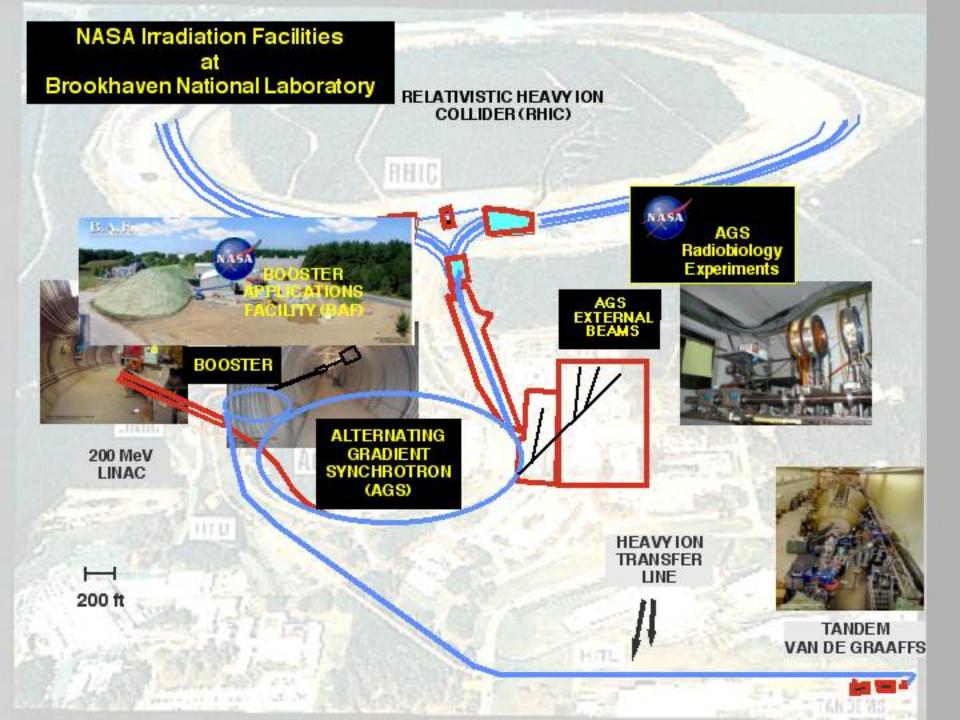
Workshop on Radiation Monitoring on the International Space Station 2-4 September 2002 Paris, France

Strategic Program Plan Elements

- Construct and operate ground facilities to simulate space and planetary radiation environments
- Acquire essential biomedical data
- Develop shielding materials
- Incorporate biomedical and materials requirements into mission design

US Radiation Facilities

- Brookhaven National Laboratory
 - -Alternating Gradient Synchrotron
 - -Booster Synchrotron
- Loma Linda University Medical Center



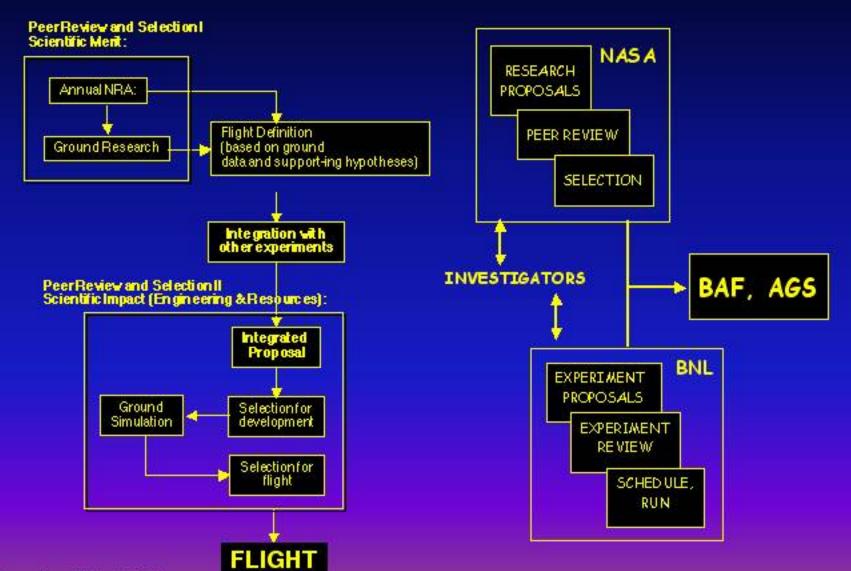
AGS RUNS

RUN	DATES	ВЕАЛ	A CHARACTE	RISTICS
		Beam	Energy	LET
			(MeV/u	(keV/µm)
)	
BNL-1	Oct 95	56Fe	1087	150
BNL-2	Oct 96	⁵⁶ Fe	1060	148
			580	173
BNL-3	Oct 97	56Fe	1060	148
			565	177
BNL-4	Apr 98	197 Au	10800	1445
	May 98	56Fe	1060	148
	100000M.146-0		565	177
BNL-5	May 99	⁵⁶ Fe	1060	148
			561	177
BNL-6	Nov 99	⁵⁶ Fe	1046	148
		²⁸ Si	1182	42
BNL-7	Jan 01	⁵⁶ Fe	1046	148
BNL-8	Apr 02	56Fe	~1000	~150
	V-160 0-50	²⁸ Si	~600	~50
			~1000	~43

ID	Participants:	Beam Hours	Sample s	
BNL-1	41 scientists from 12 institutions: 13 Pls, 3 post-docs, 3 graduate students, 1 HBCU	100.5	894	
BNL-2	63 Scientist from 18 institutions: 18 Pl s, 7 Co-Pl, 5 post-docs, 3 graduate student	129	1400	
BNL-3	64 Scientist from 22 institutions (1 international): 22 Pl s, 9 Co-Pl, 2 post-docs, 2 graduate student	149	1802	
BNL-4	65 Scientist from 21 institutions (1 international): 21 Pls, 7 Co-Pl, 1 post-docs, 3 graduate student	190.5	1183+	
BNL-5	64 Scientist from 14 institutions (1 international): 17 PIs, 4 Co-PI, 1 post-clocs, 1 graduate student	190	998+	
BNL-6	55 Scientist from 16 institutions (1 international): 15 Pl s, 4 Co-Pl, 3 post-clocs	ons (1 193		
BNL-7	81 Scientists from 24 institutions (5 international); 11 Pis, 6 Co- Pis, 1 Postdocs, 4 students	183	1654+	
BNL-8	19 Pis from 14 institutions (2 international)	162.5		

Operating Parameters

AGS Operating Parameters


ADD Operaring raisan	161613
Minimum useful heavy ion energy:	0.6 GeV/u
Maximum heavy ion energy:	14.5 GeV/u
Fluence (particles/cm²/spill)	
Maximum Extracted	3.5×10^{9}
Maximum On target	3.5×10^{9}
Spill rate (spills/min)	30
Maximum uniform beam spot diameter (cm)	7.5
Spill length (msec)	500
Beam cut off length.	<1%
Maximum measured dose rate (Gy/min)	15 (0.5 Gy/spill)

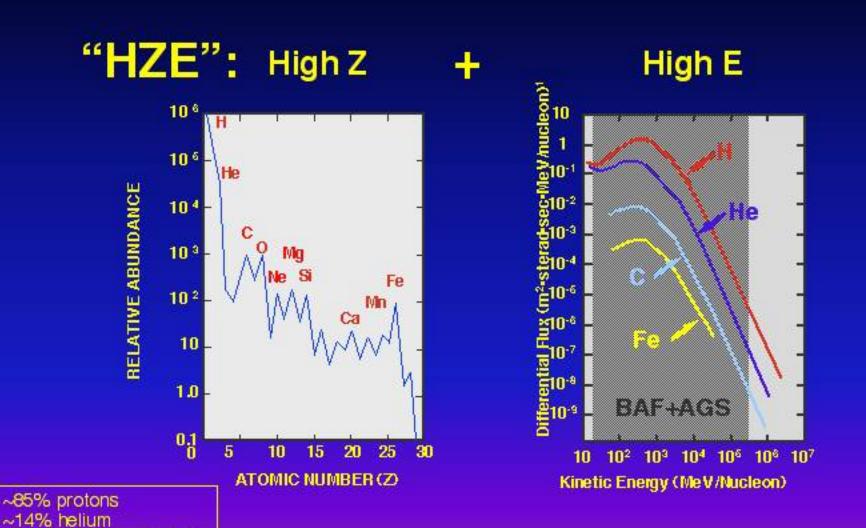
Booster Operating Parameters:

SPECIES (Z,A)	ENERGY RANGE (MeV / nucleon)	TYPICAL DOSE RATES (Gy/min)		
H(1,1))	100-3070	54-16		
Si (14,28)	90-1230	114-31		
Fe(26,56)	100-1100	146-43		
Cu(29,63)	100-1040	n.a.		
Au(79,97)	40-300	n.a.		

NASA Experiment Review and Scheduling

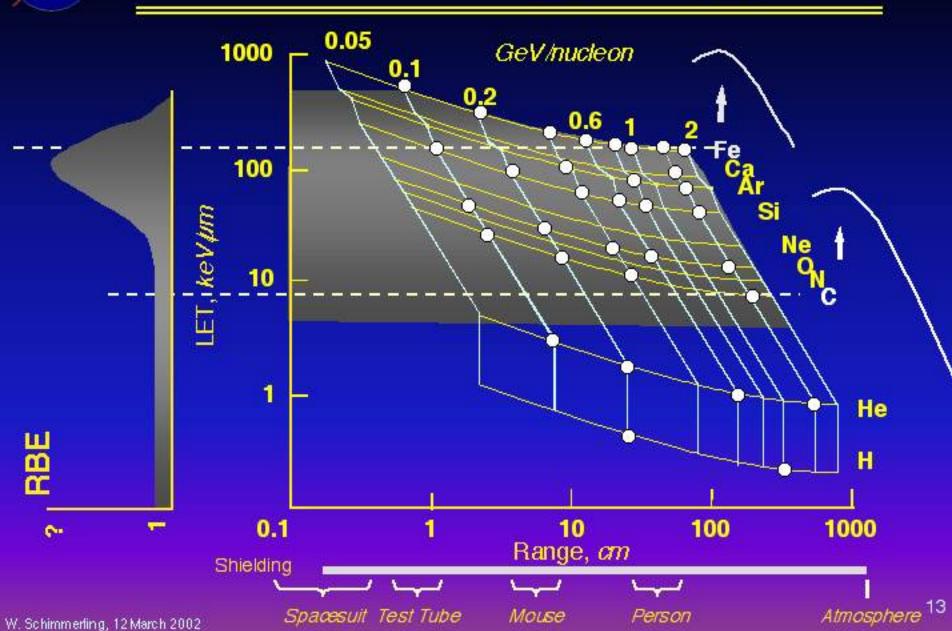
Booster Synchrotron at BNL (Artist's Conception of Extracted Beam)

BAF - 1 August 2001



Why Ground-Based Research?

- Full range of particles and energies can be obtained at particle accelerators
 - mixed radiation fields can be designed to simulate particular space radiation characteristics
- Cost effective research leading to timely, statistically significant results
 - Hypotheses can be tested without constraints and costs imposed by flight qualification
 - Frequency of experiments is significantly higher
 - Access significantly easier
- Allows correlated physics and biology investigations
 - Can measure biological effectiveness of shielding designs
 - Intercomparison and calibration of dosimeter responses
 - Correlation of dosimeters with biological responses
- Identify critical experiments for spaceflight validation
 - Benchmark physics and biology relevant to human risk
 - Pre-qualify flight experiments involving radiation


Galactic Cosmic Rays

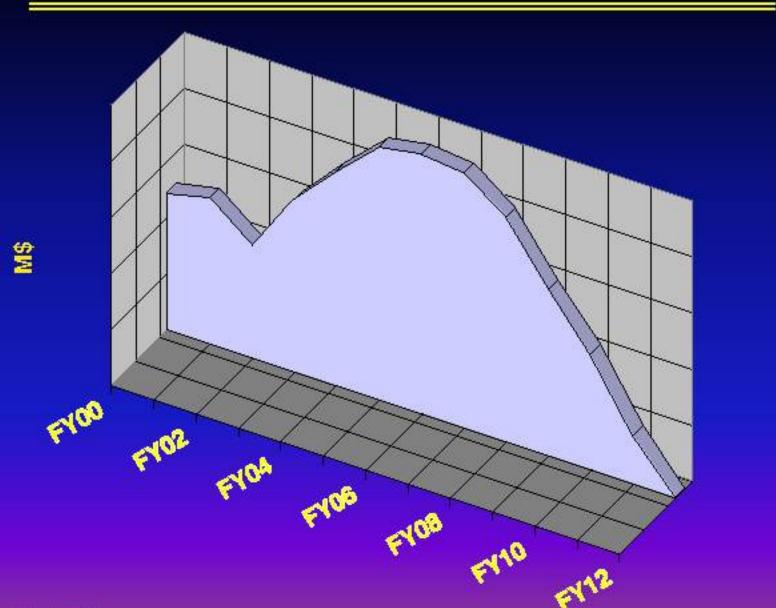
~ 1% heavier particles

LET vs. Range, Energy

Projectiles and Energies

ε _p (GeV/u)	(Z,A)										
	Н	He	С	N	0	Ne	Si	Ar	Ca	Mn	Fe
0.1		•	•		•		•				•
0.2	•	•	• X	X	• X		• X	X			• X
0.4			•		•		•	•			•
0.6		•			•	Х	• X				• X
0.8							•	•			•
1.0	•										• X
1.5		•	•		•		•	•	•	•?	•
2.0	•				•						•
5.0	•				•		•				•

- Required data
- X Partial data available



Space Radiation Initiative

- Generate knowledge required to assure that humans can live and work in space without exceeding established working limits for radiation risk at required statistical confidence levels
 - Train a generation of radiobiologists to participate in generating breakthroughs in science and leveraging them for NASA
 - Assure 3 180-day missions in LEO with 95% confidence (or similar requirement)
 - Assure one 1000-day Mars mission with 95% confidence (or similar requirement)
 - Eventually: assure permanent presence in space -- anytime, anywhere
- Predict risk (critical path)
 - mechanistically based predictions of cancer in humans
 - behavorial/neurological functional impact
 - germ cell impact
 - Interaction of radiation sensitivity with other spaceflight factors
- Reduce uncertainty
 - biomarkers to predict individual risk
 - biological and physical data base accessible at AGS, BAF
 - critical experiments on ISS, Mars, Free Flyers to validate predictive models.
- Develop Rational Intervention
 - optimized shielding methodologies
 - biology breakthroughs
 - criteria for medical surveillance and treatment
 - genetic screening and counseling

Space Radiation Protection Initiative

BAF/AGS Utilization

	FY02	FY03	FY04	FY05	FY06	FY07	FY08	FY09
Solicitations :								
Buildup to 50 biology PI	\$	\$						e.
NRA schedule: yearly	٥	•	0	0	4	٥	4	8
Commissioning of BAF facility	4	*						
Beam Use								
300 hours/yr		\$					e.	
600 hours/yr			\$				5	
1200 hours/yr			♦				-4	
AGS operation (300 - 600 h	/y)							

OMB Approval No. 2700-0087

National Aeronautics and Space Administration Office of Biological and Physical Research Washington, DC 20546

Research Announcement

Research Opportunities for Ground-Based Research in Space Radiation Biology and Space Radiation Shielding Materials

> NRA 02-OBPR-02 August 30, 2002

NASA Research Announcement Soliciting Research Proposals for the Period Ending March 30, 2004

